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Surfactant: Surface acting agent

@ Detergents & soaps

@ Bipolar molecules: hydrophilic
head, hydrophobic tail

Equation of state

y=1-pI"

Effect of surfactant:
@ Reduces the surface tension

@ Increases the surface area
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Marangoni effect

The mass transfer along an interface
between two fluids due to surface ten-
sion gradients.

@ ‘Tears of wine”
@ Surface tension gradients

@ Fingering phenomena
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Scientific applications

@ Aircraft de-icing
@ Spreading on a solid substrate
@ Film drainage in foams

@ Surfactant replacement therapy
for Respiratory Distress
Syndrome

@ Flow control in microfluidic
devices
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Two-layer shear flows: literature

Linear:

@ two-layer Couette-Poiseuille flow stable for Re =0
[Yih, 1967]

@ surfactant = unstable even at Re =0
[Frenkel & Halpern, 2002, 2003]

@ destabilising effect of inertia
[Blyth & Pozrikidis, 2004b]

Nonlinear:
@ short domains, Re = 0 [Blyth & Pozrikidis, 2004a]
both layers thin, Re = 0 [Frenkel & Halpern, 2006]

—0dp/x

]
@ thin lower layer, local system [Bassom et al., 2010]
(]

nonlocal system with inertial effects
[Kalogirou et al., 2012, 2016]

@ effect of density stratification
[Frenkel & Halpern, 2017]
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Objectives

Instability of two-layer shear flows with one layer thin
Presence of surfactant induces Marangoni effects

Effects of gravity, inertia and Marangoni forces on dynamics
Destabilisation mechanism

Comparison with experiments

Stability of one-dimensional travelling waves to spanwise perturbations
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Problem configuration

Fluid 2: pa, p2

dho Fluid 1: p1, 1 I

Dimensionless parameters
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Governing equations and boundary conditions
U = (1,0)

%+(u2~V)u2:—%Vp2+R;V uy — %9, V-ouz =0

h(] %+(U1'V)U1=*Vp1+}{tlv u177y7 V-u =0

u; = (0, 0)

r:p—2, m:ﬁ, Rei:% , Fr=
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Internal conditions

U = U v; = hy +uihy, i =1,2
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Surfactant transport equation

hzhtg 1

1 2 =1
1 T T ey (VIR = & i (\/m)z

Dimensionless parameters
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Basic flow

Steady unidirectional flow
_ 1 9 _
u1:—§A1y + By, 11=0, pPr=FP——
1
ﬂ2:_§A2y2+B2y+Cz, Up=0, pp=FP——

with constant Py and coefficients

A
Ay = Re1 K, A= —RelK =1 Fluid?
m Py 12
_m+%A1(1+h0( - 1)) B _ B
e 1+ ho(m —1) ’ T m
o, - m=1 (mho+ 3A1ho(1 = ho) Fiyid1
T m 1+ ho(m —1) '

K = —0p/ox
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Thin-film limit: hg = e < 1
@ Interfacial-shape and surfactant-concentration perturbations

h(x,t) = e+ e H(z,t),

I'(z,t) =6(e) [ (z,t).

— retain nonlinearity and Marangoni effects at leading order

@ Lubrication approximations in film

ulzm(y)+e3ﬂl+-~, v = €Yo -,
pL="ni(z,y) +epr+---.

@ Linearized Navier-Stokes in upper fluid

UQZﬁQ(y)—i-GQﬁz—l-"', 1)22621724-"',

P2 =Dy(z,y) + P2+ -+ .
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Solution in thin fluid 1

@ Navier-Stokes equations
_op, 1 0

0="22 T ke, 082
__om
0= €

Oy | Oy

e T =0

@ Tangential stress balance
tm <% N %)
e=n dy ox

where the Marangoni number has been rescaled as Ma = €6~ Mao
@ Normal stress balance

pr= Rej@ (BO(” -1) - nm)

o

875 = Maol—'z

y=en

where the Capillary number has been rescaled as Ca = ¢Cay,
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Solution in thick fluid 2

Linearised Navier-Stokes equations

200 B2, 1052 | 1 (P4 | Od
> Oz dy 2 r 0r  Re \ 8z° oy?
0% _ _10p: 1 (0% 0%
2 oz r Oy R. \ 9z Oy?
Oz | 902
bz "oy O

Move to Fourier space and define o = —ik(m — 1) (1 + 42) HF(y)
Orr-Sommerfeld type boundary-value problem
(FO) = 26*F" + K*F) = ikR. (W ("~ K°F) = a§F) = 0

F(0)=0,F(0)=1, F(1)=F'(1)=0
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Evolution equations

+o0 .
Hy+ HH, — BoHy; + Hypoy +iA [ N(k; Re)Hy dk — Iy = 0

— o0

i+ (HD)y —nlpe =0

@ Galilean translation and slow-time scale
r—x—1u(et, t— et

@ Dimensionless parameters

1— 2
A=NEpg  § _ sonomi —m), 5= 0%

Bo =
Ye Pe()

o N(k;R.) = —5F"(0) = Ng+iN effect of inertia in upper fluid layer
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hy

hy

Validation of model evolution equation

Film-thickness evolution equation

. oo .
Ht_HHz+Hx:cacx_% f N(k,Re)dekZO
—0o0

Track (normalised) deviation from flat interface at x*
Fluid 2, pa, p2

,,,,,,,,,,,,,,,,,,,,,,, 4: 1 aspect ratio channel

o, —Model
...DNS
- 0.5
% 0
0.5
1
Fluid 1, py, 02 101 106 107 108
8 : 1 aspect ratio channel t(s)
e . (©) o.75F
Destabilising mechanism: _
viscosity stratification and g o
. . ~
Inertia 0.65F
1072 107! 10 102 104
3 t(s)
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Comparison with experiment

@ Diameter D = 400 mm @ m =276
@ Width W =40 mm @ r=0.741
@ Depth d = 20 mm @ =02
@ R. = 389,461,516

[Barthelet, Charru & Fabre (1995)]

—Nonlocal

- Local

0 10 20 30 40 50
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The effect of surfactant - Linear stability theory

Linearise around uniform states

H=0 + 5]':Ieikz+at7
I'=TI,+d6e*tot 5§« 1.

Dispersion relation

[ 0 + (Bok® + k* +iAN (k) +nk*)o + (nBok* +nk® +inAN (k)k* —ik*Ip) = 0 ]

Amplification rates for k < 1
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Linear stability diagram: Bo =0

STABLE | UNSTABLE
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Linear stability diagram: Bo =0
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Linear stability diagram: Bo =0
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Linear stability diagram: Bo > 0

STABLE

UEA estnate’

Multilayer shear flows with surfactants Anna Kalogirou (Univ. of East Anglia)



Linear stability diagram: Bo < 0
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Linear stability diagram:
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Travelling waves
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Travelling waves

05
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Destabilisation mechanism

w =Ui(y=c+EH)+ 3ty + - =Uy(e) + me?H + 3ty + - -
| I

leading-order perturbation

6

Accumulation of
surfactant
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Stabilisation due to gravity
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Complex dynamical phenomena
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Complex dynamical phenomena

Signal energy Poincaré (or return) map

B(t) := foZﬂ H?(z,t)dx Consists of the points (Ey, Ent1),
n=1,2 ..., where E,, is the nt"
minimum of the energy signal E(t).
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Three-dimensional flows

Can Squire’s theorem be generalised in two-layer channel flow with
surfactants?

UEA 2

Multilayer shear flows with surfactants Anna Kalogirou (Univ. of East Anglia)



Three-dimensional flows

Can Squire’s theorem be generalised in two-layer channel flow with
surfactants?

Squire’s Theorem

If a growing 3D disturbance can be found at a given Reynolds number,
then a growing 2D disturbance exists at a lower Reynolds number.
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Three-dimensional flows
Can Squire’s theorem be generalised in two-layer channel flow with

surfactants?

Squire’s Theorem

If a growing 3D disturbance can be found at a given Reynolds number,
then a growing 2D disturbance exists at a lower Reynolds number.

@ R, = 0: Squire's theorem is valid
o R, # 0: 3D flow more unstable

+oo .
Hy+ HH, + V*H +iA [[ N(k1, k2; Re)Hg, g, dky dky — V2T =0
—0o0

I+ (HD), —nV I =0
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Stability of travelling waves

Perturb 1D travelling waves by
H(z,2,0) = H(x —ct) + R(2), I'(z,2,0)=1I(x—cr)+R(2),

where
N

R(z) = Z (o, sinmz + By, cosmz)

m=1

with random Fourier coefficients ay,, B € [—0.1,0.1].

L1 =7 Lo=7 Li=17 Lo =18 Ly =7 Lo=234
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Conclusions

@ Mathematical model for two-phase Couette-Poiseuille flows
Takes into account gravitational, inertial and Marangoni effects
Nonlocal term for upper layer dynamics

°
°

@ Reproduces experimental results (in absence of surfactant)

o Exhibits travelling-wave solutions unstable to spanwise perturbations
o

Destabilisation mechanism due to Marangoni forces

[Kalogirou et al. (2012), IMA J. Appl. Math.]
[Kalogirou & Papageorgiou (2016), J. Fluid Mech.]
[Kalogirou et al. (2016), J. Fluid Mech.]
[Kalogirou & Blyth, in preparation.]
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Extensions

© Effect of surfactant
solubility: below and above
Critical Micelle
Concentration

@ Viscoelastic surfactant
systems: rod-like micelles,
affect viscosity, study flow
stability

© Flows in different
geometries, e.g. pipes,
inclined planes with
topography
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