The lattice Boltzmann equation: background and boundary conditions

Tim Reis

Department of Mathematics Sciences
University of Greenwich
Leslie Comrie Seminar Series November 2016

Acknowledgements: P. Dellar (University of Oxford), S. Bennett (DPhil, University of Cambridge),
A. Hantsch (ILK Dresden), R. Allen (SINTEF)

Lattice Boltzmann perspectives

The first LBE review article tells us that [Succi, Benzi, Higuera 1991]
> "The LBE...does not result from the discretisation of any partial differential equation!"

The "second generation" of LB is derived from "purely microscopic considerations" and approximates the continuous Boltzmann equation [Chen and Doolen 1998 (which has about 2500 citations)]]

This may suggest that the LBE can go "beyond" Navier-Stokes, e.g capture the Knudsen layer in the transition regime - a view also held in the most recent review article [Aidun and Clausen 200]

The standard (D2Q9) lattice Boltzmann equation

 This equation:$\bar{f}_{i}\left(\mathbf{x}+\mathbf{c}_{i} \Delta t, t+\Delta t\right)-\bar{f}_{i}(\mathbf{x}, t)=\Omega(\mathbf{x}, t)$
is used to solve these equations:

$$
\begin{aligned}
\rho\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right) & =-\nabla P+\mu \nabla^{2} \mathbf{u} \\
\nabla \cdot \mathbf{u} & =0
\end{aligned}
$$

Lid-driven cavity flow: Re=7500

Roll-up of shear waves

Roll-up of shear layers in Minion \& Brown [1997] test problem,

$$
\begin{aligned}
& u_{x}= \begin{cases}\tanh (\kappa(y-1 / 4)), & y \leq 1 / 2, \\
\tanh (\kappa(3 / 4-y)), & y>1 / 2,\end{cases} \\
& u_{y}=\delta \sin (2 \pi(x+1 / 4)) .
\end{aligned}
$$

Roll-up of Shear wave with LBE

$$
R e=30,000, \kappa=80 \text { and } \delta=0.05
$$

On GPU: 600 MLUPS

Used in the automotive industry

Courtesy of Xflow [www.xflowcfd.com]

LBE for MHD Turbulence

1800^{3} grid points,Superlinear scaling, 9.1 TFlops/s Vahala et al, Commun. Comput. Phys, 4 (2008), 624-646

Velocity profile: Poiseuille flow, $R e=100$

Using bounce-back boundary conditions, we appear to get an accurate solution at moderate Re numbers ...

Velocity profile: Poiseuille flow

... but not at smaller Reynolds numbers

- This is not Knudsen slip He etal. [1997]
- We should be able to get the exact solution
- More sophisticated boundary conditions can be used ...

Overview

Derivation of the lattice Boltzmann equation

- From kinetic theory to hydrodynamics
- Matching moments: from continuous to discrete kinetic theory
- From discrete Boltzmann to lattice Boltzmann (PDEs to numerics)

Exact solutions of the D2Q9 LBE

- Boundary conditions
- Velocity field
- Deviatoric stress
- Implications for numerical stability

Summary

The kinetic theory of gases

The Navier-Stokes equations for a Newtonian fluid can be derived from Boltzmann's equation for a monotomic gas

$$
\frac{\partial f}{\partial t}+\mathbf{c} \cdot \nabla f=\Omega(f)
$$

where $f=f(\mathbf{x}, \mathbf{c}, t)$ is the distribution function of particles at \mathbf{x} and t with velocity \mathbf{c} :

$\Omega(f)$ is Boltzmann's binary collision operator.

Hydrodynamics from moments

Hydrodynamic quantities are moments of the distribution function f :

$$
\begin{aligned}
\rho(\mathbf{x}, t) & =\int f(\mathbf{x}, \mathbf{c}, t) d \mathbf{c} \\
\mathbf{u}(\mathbf{x}, t) & =\frac{1}{\rho} \int \mathbf{c} f(\mathbf{x}, \mathbf{c}, t) d \mathbf{c} \\
\theta(\mathbf{x}, t) & =\frac{1}{3 \rho} \int|\mathbf{c}-\mathbf{u}|^{2} f(\mathbf{x}, \mathbf{c}, t) d \mathbf{c}
\end{aligned}
$$

The collision operator $\Omega(f)$ drives f back to the Maxwell-Boltzmann distribution

$$
f^{(0)}=\frac{\rho}{(2 \theta \pi)^{3 / 2}} \exp \left(-\frac{|\mathbf{c}-\mathbf{u}|^{2}}{2 \theta}\right) .
$$

From kinetic theory to fluid dynamics

Recall Boltzmann's equation

$$
\frac{\partial f}{\partial t}+\mathbf{c} \cdot \nabla f=\Omega(f)
$$

Assume f relaxes towards $f^{(0)}$ with a single relaxation time τ :

$$
\frac{\partial f}{\partial t}+\mathbf{c} \cdot \nabla f=-\frac{1}{\tau}\left(f-f^{(0)}\right)
$$

The zeroth and first moments of the Boltzmann equation give exact conservation laws:

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0, \quad \frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot \boldsymbol{\Pi}=0
$$

Evolution of the momentum flux

The momentum flux Π is given by another moment

$$
\boldsymbol{\Pi}=\int f \mathbf{c c} d \mathbf{c}, \quad \text { and } \quad \Pi^{(0)}=\int f^{(0)} \mathbf{c} \mathbf{c} d \mathbf{c}
$$

Π is not conserved by collisions. It evolves according to

$$
\frac{\partial \boldsymbol{\Pi}}{\partial t}+\nabla \cdot \boldsymbol{Q}=-\frac{1}{\tau}\left(\boldsymbol{\Pi}-\boldsymbol{\Pi}^{(0)}\right)
$$

where

$$
\boldsymbol{\Pi}^{(0)}=\rho \mathbf{u} \mathbf{u}+\rho \theta \mathbf{I}, \quad \text { and } \quad \boldsymbol{Q}=\int f \mathbf{c c c} d \mathbf{c} .
$$

Hydrodynamics follow by exploiting $\tau \ll T$.

Cambridge/Arthematical Library
S. Chapman and T.G Cowling (1970)

Cambricige/Aathematical Library
"Reading this book is like chewing glass [S. Chapman]"

Discrete kinetic theory

Look to simplify Boltzmann's equation without losing the properties needed to recover the Navier-Stokes equation.

Discetise the velocity space such that \mathbf{c} is confined to a set $\mathbf{C}_{0}, \mathbf{C}_{1}, \ldots, \mathbf{C}_{9}$:

Instead of $f(\mathbf{x}, \mathbf{c}, t)$ we have $f_{i}(\mathbf{x}, t)$.

The discrete Boltzmann equation

The Boltzmann equation with discrete velocities is

$$
\frac{\partial f_{i}}{\partial t}+\mathbf{c}_{i} \cdot \nabla f_{i}=-\frac{1}{\tau}\left(f_{i}-f_{i}^{(0)}\right)
$$

We now supply the equilibrium function, for example

$$
f_{i}^{(0)}=W_{i} \rho\left(1+\frac{1}{\theta} \mathbf{u} \cdot \mathbf{c}_{i}+\frac{1}{2 \theta^{2}}\left(\mathbf{u} \cdot \mathbf{c}_{i}\right)^{2}-\frac{1}{2 \theta}|\mathbf{u}|^{2}\right)
$$

The previous integrals are now replaced by summations:

$$
\begin{aligned}
\rho & =\sum_{i} f_{i}=\sum_{i} f_{i}^{(0)}, \\
\rho \mathbf{u} & =\sum_{i} f_{i} \mathbf{c}_{i}=\sum_{i} f_{i}^{(0)} \mathbf{c}_{i} \\
\boldsymbol{\Pi}^{(0)} & =\sum_{i} f_{i}^{(0)} \mathbf{c}_{i} \mathbf{c}_{i}=\rho \mathbf{u u}+\theta \mathbf{l} .
\end{aligned}
$$

Moment equations

$$
\frac{\partial f_{i}}{\partial t}+\mathbf{c}_{i} \cdot \nabla f_{i}=-\frac{1}{\tau}\left(f_{i}-f_{i}^{(0)}\right)
$$

Taking the zeroth, first, and second moments of the discrete Boltzmann equation give

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \frac{\partial \rho \mathbf{u}}{\partial t}+\nabla \cdot \boldsymbol{\Pi}=0, \\
& \frac{\partial \boldsymbol{\Pi}}{\partial t}+\nabla \cdot \boldsymbol{Q}=-\frac{1}{\tau}\left(\boldsymbol{\Pi}-\boldsymbol{\Pi}^{(0)}\right)
\end{aligned}
$$

Note that we did exactly the same for the continuum Boltzmann equation.

Chapman-Enskog expansion

Hydrodynamics now follows from seeking solutions to

$$
\frac{\partial f_{i}}{\partial t}+\mathbf{c}_{i} \cdot \nabla f_{i}=-\frac{1}{\tau}\left(f_{i}-f_{i}^{(0)}\right)
$$

that vary slowly compared with the timescale τ.
We assume f_{i} is close to equilibrium and expand:

$$
f_{i}=f_{i}^{(0)}+\tau f_{i}^{(1)}+\tau^{2} f_{i}^{(2)}+\ldots
$$

Or, equivalently,

$$
\boldsymbol{\Pi}=\boldsymbol{\Pi}^{(0)}+\tau \boldsymbol{\Pi}^{(1)}+\tau^{2} \boldsymbol{\Pi}^{(2)} \ldots, \quad \boldsymbol{Q}=\boldsymbol{Q}^{(0)}+\tau \boldsymbol{Q}^{(1)}+\tau^{2} \boldsymbol{Q}^{(2)} \ldots
$$

Also expand the temporal derivative:

$$
\frac{\partial}{\partial t}=\frac{\partial}{\partial t_{0}}+\tau \frac{\partial}{\partial t_{1}} \ldots
$$

Hydrodynamics from moments

Substituting these expansions into the moment equations and truncating at $\mathcal{O}(1)$ we obtain

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t_{0}}+\nabla \cdot(\rho \mathbf{u}) \\
&=0 \\
& \frac{\partial \rho \mathbf{u}}{\partial t_{0}}+\nabla \cdot \boldsymbol{\Pi}^{(0)} \\
&=0 \\
& \frac{\partial \boldsymbol{\Pi}^{(0)}}{\partial t_{0}}+\nabla \cdot \boldsymbol{Q}^{(0)}=-\boldsymbol{\Pi}^{(1)}
\end{aligned}
$$

The first two equations coincide with the compressible Euler equations if we choose

$$
\boldsymbol{\Pi}^{(0)}=\rho \theta \mathbf{I}+\rho \mathbf{u} \mathbf{u}
$$

Calculating the viscous stress tensor

For the Navier-Stokes equation we need to compute the first correction $\Pi^{(1)}$ to the momentum flux.

$$
\frac{\partial \boldsymbol{\Pi}^{(0)}}{\partial t_{0}}+\nabla \cdot \boldsymbol{Q}^{(0)}=-\boldsymbol{\Pi}^{(1)}
$$

Given $\Pi^{(0)}=\rho \theta \mathbf{I}+\rho \mathbf{u} \mathbf{u}$ we find (after a messy calculation)

$$
\begin{aligned}
\partial_{t_{0}} \Pi_{\beta \gamma}^{(0)} & =-\theta \delta_{\beta \gamma} \partial_{\alpha}\left(\rho u_{\alpha}\right)-\theta u_{\beta} \partial_{\gamma} \rho-\theta u_{\gamma} \partial_{\beta} \rho-\partial_{\alpha}\left(\rho u_{\alpha} u_{\beta} u_{\gamma}\right) \\
\partial_{\alpha} Q_{\alpha \beta \gamma}^{(0)} & =\theta \delta_{\beta \gamma} \partial_{\alpha}\left(\rho u_{\alpha}\right)+\theta \partial_{\beta}\left(\rho u_{\gamma}\right)+\theta \partial_{\gamma}\left(\rho u_{\beta}\right)
\end{aligned}
$$

Assembling the Navier-Stokes equations

The viscous stress is then found to be

$$
\boldsymbol{\Pi}^{(1)}=-\rho \theta\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)+\mathcal{O}\left(M a^{3}\right),
$$

where $M a=|\mathbf{u}| / c_{s}$ is the Mach number $\left(c_{s}=\sqrt{\theta}\right)$.
We have obtained the (compressible) Navier-Stokes equations

$$
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u})=0, \quad \partial_{t}(\rho \mathbf{u})+\nabla \cdot\left(\boldsymbol{\Pi}^{(0)}+\tau \boldsymbol{\Pi}^{(1)}\right)=0,
$$

where the dynamic viscosity $\mu=\tau \rho \theta$.

From discrete Boltzmann to lattice Boltzmann

Integrating the discrete Boltzmann equation

$$
\frac{\partial f_{i}}{\partial t}+\mathbf{c}_{i} \cdot \nabla f_{i}=\Omega_{i}(f)
$$

along a characteristic for time Δt gives

$$
f_{i}\left(x+c_{i} \Delta t, t+\Delta t\right)-f_{i}(x, t)=\int_{0}^{\Delta t} \Omega_{i}\left(x+c_{i} s, t+s\right) d s,
$$

Approximating the integral by the trapezium rule yields

$$
\begin{aligned}
f_{i}\left(x+c_{i} \Delta t, t+\Delta t\right)-f_{i}(x, t) & =\frac{\Delta t}{2}\left(\Omega_{i}\left(x+c_{i} \Delta t, t+\Delta t\right)\right. \\
& \left.+\Omega_{i}(x, t)\right)+O\left(\Delta t^{3}\right) .
\end{aligned}
$$

This is an implicit system.

Change of Variables

To obtain a second order explicit LBE at time $t+\Delta t$ define

$$
\bar{f}_{i}(x, t)=f_{i}(x, t)+\frac{\Delta t}{2 \tau}\left(f_{i}(x, t)-f_{i}^{(0)}(x, t)\right) .
$$

The new algorithm is
$\bar{f}_{i}\left(\mathbf{x}+\mathbf{c}_{i} \Delta t, t+\Delta t\right)-\bar{f}_{i}(\mathbf{x}, t)=-\frac{\Delta t}{\tau+\Delta t / 2}\left(\bar{f}_{i}(\mathbf{x}, t)-f_{i}^{(0)}(\mathbf{x}, t)\right)$

This could have also been obtained by Strang splitting Dellar [2011]

A quick note on forcing

A body force R_{i} in the discrete Boltzmann equation

$$
\frac{\partial f_{i}}{\partial t}+\mathbf{c}_{i} \cdot \nabla f_{i}=-\frac{1}{\tau}\left(f_{i}-f_{i}^{(0)}\right)+R_{i}
$$

should have the following moments:

$$
\sum_{i} R_{i}=0, \quad \sum_{i} R_{i} \mathbf{c}_{i}=F, \quad \sum_{i} R_{i} \mathbf{c}_{i} \mathbf{c}_{i}=F \mathbf{u}+\mathbf{u} F
$$

and implemented as

$$
\begin{aligned}
\bar{f}_{i}\left(x+c_{i} \Delta t\right. & , t+\Delta t)-\bar{f}_{i}(x, t) \\
& =-\frac{\Delta t}{\tau+\Delta t / 2}\left(\bar{f}_{i}(x, t)-f_{i}^{(0)}(x, t)\right)+\frac{\tau \Delta t}{\tau+\Delta t / 2} R_{i}(x, t)
\end{aligned}
$$

Analytic solution of the LBE

$$
\begin{aligned}
\bar{f}_{i}\left(x+c_{i} \Delta t\right. & t+\Delta t)-\bar{f}_{i}(x, t) \\
& =-\frac{\Delta t}{\tau+\Delta t / 2}\left(\bar{f}_{i}(x, t)-f_{i}^{(0)}(x, t)\right)+\frac{\tau \Delta t}{\tau+\Delta t / 2} R_{i}(x, t)
\end{aligned}
$$

Consider flows satisfying

$$
\frac{\partial}{\partial x}=\frac{\partial}{\partial t}=0, \quad F=(\rho G, 0)
$$

Walls located at $j=1$ and $j=n$
Let \bar{f}_{i}^{j} denote the the distribution function \bar{f}_{i} at node j; similarly for u_{j} and v_{j}. Then...

$$
\begin{aligned}
& \bar{f}_{0}^{j}=\frac{4 \rho}{9}\left(1-\frac{3}{2}\left(u_{j}^{2}+v_{j}^{2}\right)\right), \\
& \bar{f}_{1}^{j}=\frac{\rho}{9}\left(1+3 u_{j}+3 u_{j}^{2}-\frac{3 v_{j}^{2}}{2}\right)+\frac{\tau \rho G}{3}\left(2 u_{j}+1\right) \text {, } \\
& \bar{F}_{2}^{j}=\frac{\rho}{9(\tau+1 / 2)}\left(1+3 v_{j-1}+2 v_{j-1}^{2}-\frac{3 u_{j-1}^{2}}{2}\right)+\frac{\tau-1 / 2}{\tau+1 / 2} \bar{T}_{2}^{j-1}, \\
& \bar{F}_{3}^{\prime}=\frac{\rho}{9}\left(1-3 u_{j}+3 u_{j}^{2}-\frac{3 v_{j}^{2}}{2}\right)+\frac{\tau \rho G}{3}\left(2 u_{j}-1\right) \text {, } \\
& \bar{f}_{4}^{j}=\frac{\rho}{9(\tau+1 / 2)}\left(1-3 v_{j+1}+3 v_{j+1}^{2}-\frac{3 u_{j+1}^{2}}{2}\right)-\frac{\tau-1 / 2}{\tau+1 / 2} \bar{f}_{4}^{j+1}, \\
& \bar{f}_{5}^{j}=\frac{\rho}{36(\tau+1 / 2)}\left(1+3 u_{j-1}+3 v_{j-1}+3 u_{j-1}^{2}+3 v_{j-1}^{2}+9 u_{j-1} v_{j-1}\right) \\
& +\frac{\tau \rho G}{12(\tau+1 / 2)}\left(1+2 u_{j-1}\right)+\frac{\tau-1 / 2}{\tau+1 / 2} \bar{f}_{5}^{j-1},
\end{aligned}
$$

$$
\begin{aligned}
\bar{f}_{6}^{j} & =\frac{\rho}{36(\tau+1 / 2)}\left(1-3 u_{j-1}+3 v_{j-1}+3 u_{j-1}^{2}+3 v_{j-1}^{2}-9 u_{j-1} v_{j-1}\right) \\
& -\frac{\tau \rho G}{12(\tau+1 / 2)}\left(1-2 u_{j-1}\right)+\frac{\tau-1 / 2}{\tau+1 / 2} \bar{f}_{6}^{j-1}, \\
\bar{f}_{7}^{j} & =\frac{\rho}{36(\tau+1 / 2)}\left(1-3 u_{j+1}-3 v_{j+1}+3 u_{j+1}^{2}+3 v_{j+1}^{2}+9 u_{j+1} v_{j+1}\right) \\
& -\frac{\tau \rho G}{12(\tau+1 / 2)}\left(1-2 u_{j+1}\right)+\frac{\tau-1 / 2}{\tau+1 / 2} \bar{f}_{7}^{j+1}, \\
\bar{f}_{8}^{j} & =\frac{\rho}{36(\tau+1 / 2)}\left(1+3 u_{j+1}-3 v_{j+1}+3 u_{j+1}^{2}+3 v_{j+1}^{2}-9 u_{j+1} v_{j+1}\right) \\
& +\frac{\tau \rho G}{12(\tau+1 / 2)}\left(1+2 u_{j+1}\right)+\frac{\tau-1 / 2}{\tau+1 / 2} \bar{f}_{8}^{j+1},
\end{aligned}
$$

Poiseuille flow

This recurrence relation reduces to

$$
\frac{u_{j+1} v_{j+1}-u_{j-1} v_{j-1}}{2}=\nu\left(u_{j+1}+u_{j-1}-2 u_{j}\right)+G,
$$

This is the second order finite-difference form of the incompressible Navier-Stokes equations with a constant body force:

$$
\frac{\partial(u v)}{\partial y}=\nu \frac{\partial^{2} u}{\partial y^{2}}+G
$$

Solution of the difference equation

$$
\frac{u_{j+1} v_{j+1}-u_{j-1} v_{j-1}}{2}=\nu\left(u_{j+1}+u_{j-1}-2 u_{j}\right)+G
$$

We can show ρ is constant and $v_{j}=0$
The solution to this second order difference equation is

$$
u_{j}=\frac{4 U_{c}}{(n-1)^{2}}(j-1)(n-j)+U_{s}, \quad j=1,2, \ldots, n
$$

where $U_{C}=H^{2} G / 8 \nu$ is the centre-line velocity and $H=(n-1)$ is the channel height.

Numerical slip for bounce-back

If we use bounce-back boundary conditions, we find the numerical slip to be не etal. [1997]

$$
U_{s}=\frac{48 \nu^{2}-1}{n^{2}} U_{c}
$$

Moments at a wall

$$
\begin{aligned}
\rho & =f_{0}+f_{1}+f_{2}+f_{3}+f_{4}+f_{5}+f_{6}+f_{7}+f_{8} \\
\rho u_{x} & =f_{1}-f_{3}+f_{5}-f_{6}-f_{7}+f_{8} \\
\rho u_{y} & =f_{2}-f_{4}+f_{5}+f_{6}-f_{7}-f_{8}
\end{aligned}
$$

Moment-based boundary conditions

THE PLAN:

Formulate the boundary conditions in the moment basis, and then transform them into into boundary conditions for the distribution functions Bennet [2000).

Moments	Combination of unknowns
$\rho, \rho u_{y}, \Pi_{y y}$	$f_{2}+f_{5}+f_{6}$
$\rho u_{x}, \Pi_{x y}, Q_{x y y}$	$f_{5}-f_{6}$
$\Pi_{x x}, Q_{x x y}, R_{x x y y}$	$f_{5}+f_{6}$

We can pick one constraint from each group. A natural choice is

$$
\begin{aligned}
\rho u_{y} & =0 \\
\rho u_{x} & =\rho u_{s l i p} \\
\Pi_{x x} & =\theta \rho+\rho u_{s l i p}^{2} \Longrightarrow \quad \frac{\partial u_{s l i p}}{\partial x}=0
\end{aligned}
$$

It really is quite simple

For no-slip, these conditions translate into

$$
\begin{aligned}
& \bar{f}_{2}=\bar{f}_{1}+\bar{f}_{3}+\bar{f}_{4}+2\left(\bar{f}_{7}+\bar{f}_{8}\right)-\frac{\rho}{3} \\
& \bar{f}_{5}=-\bar{f}_{1}-\bar{f}_{8}+\frac{\rho}{6} \\
& \bar{f}_{6}=-\bar{f}_{3}-\bar{f}_{7}+\frac{\rho}{6},
\end{aligned}
$$

Flow in a microchannel

No slip	Slip flow	Transition	Molecular
$K n \lesssim 10^{-3}$	$10^{-3} \lesssim K n \lesssim 10^{-1}$	$10^{-1} \lesssim K n \lesssim 10$	$K n \gtrsim 10$

In shear flow the LBE reduces to a linear second-order recurrence relation \Longrightarrow linear or parabolic profiles at all Kn

But we can capture flow in the bulk from with slip conditions

Maxwell-Navier boundary condition

Wall boundary conditions:

$$
u_{\text {slip }}=\left.\sigma K n H \partial_{y} u\right|_{\text {wall }}, \quad \sigma=\left(2-\sigma_{a}\right) / \sigma_{a}
$$

These can be expressed in terms of moments:

$$
\begin{aligned}
& \bar{f}_{2}=\bar{f}_{1}+\bar{f}_{3}+\bar{f}_{4}+2\left(\bar{f}_{7}+\bar{f}_{8}\right)-\left(P-\rho u_{\text {slip }}^{2}\right) \\
& \bar{f}_{5}=-\bar{f}_{1}-\bar{f}_{8}+\left(P+\rho u_{\text {slip }}^{2}+\rho u_{\text {slip }}\right) / 2 \\
& \bar{f}_{6}=-\bar{f}_{3}-\bar{f}_{7}+\left(P+\rho u_{\text {slip }}^{2}-\rho u_{\text {slip }}\right) / 2
\end{aligned}
$$

and since $\left.\Pi_{x y}\right|_{\text {wall }}=\frac{\left.2 \tau \bar{\Gamma}_{x y}\right|_{\text {wall }}}{(2 \tau+\Delta t)}=\left.\mu \partial_{y} u\right|_{\text {wall }}$,

$$
u_{\text {slip }}=-\frac{6\left(-\bar{f}_{1}+\bar{f}_{3}+2 \bar{f}_{7}-2 \bar{f}_{8}\right)}{\rho(2 \tau+1+6 K n H)}
$$

Flow in a microchannel: asymptotic solution

We consider a viscous fluid in a channel with an aspect ratio $\delta=L / H \ll 1$.

The relevant dimensionless numbers are

$$
R e=\frac{\rho_{0} U_{0} H}{\mu}, \quad M a=\frac{U_{0}}{\sqrt{\gamma R T}}, \quad K n=\sqrt{\frac{\pi \gamma}{2}} \frac{M a}{R e}
$$

An expansion in δ yields the leading-order solution

$$
\begin{aligned}
u(x, y) & =-\frac{\epsilon R e}{8 M a^{2}} p^{\prime}\left(1-4 y^{2}+4 \sigma \frac{K n}{p}\right) \\
v(x, y) & =\frac{\epsilon^{2} R e}{8 p M a^{2}}\left[\frac{1}{2}\left(p^{2}\right)^{\prime \prime}\left(1-\frac{4}{3} y^{2}\right)+4 \sigma K n p^{\prime \prime}\right] \\
P(x) & =\sqrt{(6 K n)^{2}+(1+12 K n) x+\theta(\theta+12 K n)(1-x)}-6 K n
\end{aligned}
$$

Flow in a microchannel: $K n=0.1$

Convergence

Deviatoric stress in Poiseuille flow, $R e=100$

For Newtonian fluids: $T_{x x} \propto \partial u / \partial x=0$
From BGK:

$$
T_{x x}=-2 \mu \tau(\partial u / \partial y)^{2}
$$

"Analytic" is the exact solution from the continuous BGK Boltzmann equation

Analysis of the stress field

We use the same ideas to solve the LBE stress field:

$$
\begin{aligned}
\Pi_{y y} & =\frac{\rho}{3} \\
\Pi_{x y} & =-\nu \rho \frac{u_{j+1}-u_{j-1}}{2}
\end{aligned}
$$

These agree with the components of the Newtonian deviatoric stress

Deviatoric stress

The $T_{x x}^{j}$ component of \mathbf{T} is more interesting

$$
\begin{aligned}
& 3\left(4 \tau^{2}-1\right)\left(T_{x x}^{j+1}-2 T_{x x}^{j}+T_{x x}^{j-1}\right)-12 T_{x x}^{j}= \\
& \quad 4 \tau^{2} \rho\left(u_{j-1}^{2}-2 u_{j}^{2}+u_{j+1}^{2}\right)-16 \tau^{3} \rho G\left(u_{j+1}+u_{j-1}-2 u_{j}\right) \\
& \quad+6 \tau \rho G\left(u_{j+1}+u_{j-1}+2 u_{j}\right) .
\end{aligned}
$$

The homogenous solution is

$$
T_{x x}^{j}=A m^{j}+B m^{-j},
$$

where A and B are constants and

$$
m=\frac{2 \tau+1}{2 \tau-1} .
$$

Deviatoric stress solution

The particular integral is

$$
T_{x x}^{j(P I)}=-2 \mu \tau\left(u^{\prime}\right)^{2}+O\left(M a^{3}\right)
$$

Recall the Navier-Stokes boundary condition

$$
\Pi_{x x}=\Pi_{x x}^{(0)} \Longrightarrow T_{x x}=0
$$

Hence

$$
\begin{aligned}
A & =\frac{m^{n-1}-1}{m\left(m^{2 n-2}-1\right)} T^{W} \\
B & =\frac{m^{n}\left(m^{n-1}-1\right)}{m^{2 n-2}-1} T^{W},
\end{aligned}
$$

where T^{W} is the particular integral evaluated at the wall.

Inconsistency

The stress with Navier-Stokes boundary conditions is

$$
\begin{aligned}
T_{x x}^{j} & =\left(\frac{m^{n-1}-1}{m\left(m^{2 n-2}-1\right)}\right) T^{w} m^{j}+\left(\frac{T m^{n}\left(m^{n-1}-1\right)}{m^{2 n-2}-1}\right) T^{w} m^{-j} \\
& -2 \mu \tau\left(u^{\prime}\right)^{2}+3 G^{2}\left(1+4 \tau^{2}\right)
\end{aligned}
$$

Stress boundary conditions

A consistent boundary condition for the stress is

$$
\begin{aligned}
\bar{\Pi}_{x x} & =\frac{\rho}{3}-\frac{2 \tau+\Delta t}{2 \tau} T_{x x}, \\
& =\frac{\rho}{3}+\frac{12 \tau}{\rho(2 \tau+\Delta t)} \bar{\Pi}_{x y}^{2}
\end{aligned}
$$

Finite difference interpretation

Solving the lattice Boltzmann recurrence equation

$$
\begin{aligned}
3\left(4 \tau^{2}-1\right)\left(T_{x x}^{j+1}-2 T_{x x}^{j}+T_{x x}^{j-1}\right) & -12 T_{x x}^{j} \\
& =4 \tau^{2} \rho\left(u_{j-1}^{2}-2 u_{j}^{2}+u_{j+1}^{2}\right) \\
& -16 \tau^{3} \rho G\left(u_{j+1}+u_{j-1}-2 u_{j}\right) \\
& +6 \tau \rho G\left(u_{j+1}+u_{j-1}+2 u_{j}\right)
\end{aligned}
$$

$\tau^{2}=1 / 4 \Longrightarrow$ no recurrence in non-conserved moments
$\tau^{2}=1 / 6 \Longrightarrow$ Lele's compact finite difference scheme ${ }_{[L e l e ~ 92]}$

Two relaxation time LBE

Relax odd and even moments at different rates:

$$
\begin{aligned}
\bar{f}_{i}\left(\mathbf{x}+\mathbf{c}_{i}, t+\Delta t\right)=\bar{f}_{i}(\mathbf{x}, t) & -\frac{1}{\tau^{+}+1 / 2}\left[\frac{1}{2}\left(\bar{f}_{i}+\bar{f}_{k}\right)-f_{i}^{(0+)}\right] \\
& -\frac{1}{\tau^{-}+1 / 2}\left[\frac{1}{2}\left(\bar{f}_{i}-\bar{f}_{k}\right)-f_{i}^{(0-)}\right]
\end{aligned}
$$

Solving the recurrence yields

$$
\begin{aligned}
3(4 \Lambda-1)\left(T_{x x}^{j+1}-2 T_{x x}^{j}+T_{x x}^{j-1}\right) & -12 T_{x x}^{j} \\
& =4 \wedge \rho\left(u_{j-1}^{2}-2 u_{j}^{2}+u_{j+1}^{2}\right) \\
& -16 \wedge \tau \rho G\left(u_{j+1}+u_{j-1}-2 u_{j}\right) \\
& +6 \tau \rho G\left(u_{j+1}+u_{j-1}+2 u_{j}\right)
\end{aligned}
$$

where $\Lambda=\tau^{+} \tau^{-}$

TRT results, $\Lambda=1 / 4$

$$
T_{x x}=2 \tau^{+} \mu u u^{\prime \prime}-\frac{2 \Lambda}{3}\left(u u^{\prime \prime}+\left(u^{\prime}\right)^{2}\right)
$$

Lid-driven cavity flow: $R e=7500$

Lid-driven cavity flow: the numbers

	Primary		
$R e=400$			
Present $\Lambda=1 / 4$	0.1139	0.5547	0.6055
Ghia et al.	0.1139	0.5547	0.6055
Sahin and Owens	0.1139	0.5536	0.6075
$R e=1000$			
Present $\Lambda=1 / 4$	0.1189	0.5313	0.5664
Ghia et al.	0.1179	0.5313	0.5625
Sahin and Owens	0.1188	0.5335	0.5639
Botella et al.	0.1189	0.4692	0.5652
$R e=7500$			
Present $\Lambda=1 / 4$	0.1226	0.5117	0.5352
Ghia et al.	0.1200	0.5117	0.5322
Sahin and Owens	0.1223	0.5134	0.5376

Note: Second order convergence of L_{2} error norm for global velocity and pressure fields

Natural Convection

Flow is driven by density variation

$$
\begin{aligned}
& \frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla P+\operatorname{Pr} \nabla^{2} \mathbf{u}+\operatorname{RaPr} \mathbf{g} \\
& \frac{\partial \theta}{\partial t}+\mathbf{u} \cdot \nabla \theta=\nabla^{2} \theta
\end{aligned}
$$

Streamfunction and Temperature plots

Contours of flow fields for convection in a square cavity. From left to right, $R a=1000, R a=10000, R a=1000000$

Nusselt numbers

$R a$	Study	Nu
10^{3}	Present	1.1178
	de Vahl Davis	1.118
	Present	8.8249
10^{6}	Le Quere	8.8252
	de Vahl Davis	8.800
	Present	30.23339
10	Le Quere	30.225

Work with moments

Summary

The kinetic formulation yields a linear, constant coefficient hyperbolic system where all nonlinearities are confined to algebraic source terms.

The linear differential operators may be discretised exactly by integrating along their characteristics, while the hydrodynamic equations with their nonlinear convection terms are recovered by seeking slowly varying solutions to the kinetic equations

Nonlinearity is local, non-locality is linear sauro Succi
The LBE in its standard form does NOT capture kinetic effects in the velocity field but more subtle effects manifest themselves in the stress at $O\left(\tau^{2}\right)$

Analytic solutions of the LBE for simple flows gives insight into its numerical and physical characteristics

Acknowledgements

Thanks to:
Paul Dellar(University of Oxford)
Sam Bennett (DPhil, University of Cambridge)
Andreas Hantsch (ILK Dresden)
Rebecca Allen (SINTEF)

Knudsen boundary layers??

