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Predicting phenomena as single values

Observed phenomena do not have “single point values;”

they cannot be predicted or measured with perfect certainty

Predicted performance levels cannot be absolutely assured, 

but only given in terms of probability

What is that level of uncertainty in the output?

Importance of that uncertainty depends on purpose of model
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Three reasons for being concerned 

about uncertainty in our predictions

1. Limit to uncertainty of output

Question raised by Peter Quested (NPL, UK) at MCWASP (Aachen, 2000): 

how much uncertainty in input data can we tolerate?

2. Design with factor of safety

Expected duty of system = 6, 

so design with a factor of safety of 2

(predicted capability = 12)

Proper value of factor of safety really informed 

by probability distribution functions of 

the predicted and 

the expected duty of system
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Why are we concerned with uncertainty?

3. Validation of model predictions to experiments

Radial copper  composition profile 

in DC cast ingot

(Vreeman et al, ASME JHT, 2003)

What is the uncertainty in 

the model?

Do these data validate the model?

Agreement depends on uncertainties of 

experiment and model.
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Sources of uncertainty: Numerical

Numerical uncertainty can usually be reduced by grid

refinement, reduction of time step … within a given method

Exception: singularities

discontinuous thermal boundary conditions

leading edge of boundary layers

crack tips (elastic stress model)

“Verification” uncertainty
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Sources of uncertainty: Epistemic

Epistemic uncertainty = is the model physically correct?

Depends on:

state of knowledge of physical processes

what is included in our model

E.g., simple projectile motion – drag?

orbital mechanics – variable gravitational constants?

Best cure is better/more focused experiments to inform the

model building

“Validation” uncertainty
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Sources of uncertainty: Aleatoric

Material properties, initial and boundary conditions are model

inputs with (hopefully) well-characterized probability distributions

What kinds of PDFs?

Gaussian, log-normal, uniform, scattered/discrete

what does your data look like?

We’ll focus today on aleatoric uncertainty

Aleatoric uncertainty =

• result of uncertainty of input values

• input is uncertain because it is variable or there is

uncertainty in measurement
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• Sampling methods produce probability density functions (PDFs) of

outputs

• For each random value, evaluate model and calculate output parameter

• Method is simple and non-intrusive (model can be black box)

• Can become computationally expensive, is there a better way?

Evaluate 

Numerical 

Model

104 – 107

times!

Aleatoric Uncertainty Propagation by Brute Force: 

Monte Carlo Sampling
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A less expensive approach: Use of a surrogate model

q = f(p) p = input q = output f(p) = model

random input (p) gives random output (q)

can build surrogate model (response surface), መ𝑓(p),

that is cheaper than f(p), from relatively few model evaluations

surrogate can be:

subjected to Monte Carlo analysis;

used to determine sensitivity of output to changes in input

usefulness of surrogate depends on how well መ𝑓(p) mimics f(p)

---------------------------

One example of “framework” software using surrogate model:

DAKOTA (Sandia National Labs)
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Generate 

Response 

Surface

Monte Carlo 

Sampling

Building the Surrogate: Single Input

Evaluate 

Numerical 

Model 

9 times

• Use of surrogate model is more computationally efficient

• Reduces the number of numerical model simulations by orders of

magnitude
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(Hunt et al., Comp. Phys. Comm., 2015)

Evaluate 

Numerical 

Model

Generate 

Response 

Surface

Monte Carlo 

Sampling
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• More than one uncertain input can be propagated at a time

• Different polynomial orders can be used as a surrogate model

• Computational expense increases with polynomial order

Building the Surrogate Model: Multiple Inputs
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Uncertainty quantification with a surrogate

Another example of framework software: 

PUQ (PRISM Uncertainty Quantification)
(Hunt et al., Computer Physics Communications, 2015)

• Freely available on Purdue’s NanoHub (www.nanohub.org)

• Can download or run in cloud on NanoHub

• Non-intrusive:

input = PDFs of input parameters

output = surrogate model, PDFs of output parameters

• Example tools on NanoHub:

• Dislocation dynamics in

nanocrystalline material

• 1D solidification model

(Fezi and Krance, MCWASP conf., 2015)
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Application to static casting of Al-5wt% Cu

• Rigid mushy zone (solid + liquid)

• Solidification shrinkage and 

buoyancy drive liquid flow 

• Uncertain inputs:

– Dendrite arm spacing

– Heat transfer coefficient

– Material properties

• Outputs of interest:

– Solidification time (ts)

– Macrosegregation number (M)
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Mixture transport model for alloy solidification
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Conservation of mass:

X-momentum:

Y-momentum:

Species transport:

Energy transport:

Drag Force   K~λ2
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Uncertainty in dendrite arm spacing

• Begin with one input parameter, SDAS (λ)

• Flow in the mushy zone is damped by the 

drag on dendrite arms

• Blake-Cozeny model for permeability:
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32
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Data from Melo et al., J. Mater. Sci., 2005

• Experimental measurements used as 

model inputs, including uncertainty

• Uncertainty captures variation within the 

part and measurement uncertainties
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Effect of dendrite arm spacing uncertainty

• Solidification time is relatively unaffected by the uncertainty 
in arm spacing, as flow in mushy zone has little influence.

• For tS:  μo = 1410 s, σo = 2.3 s, 2σo/ μo = 0.16%

• Macrosegregation increases with arm spacing

• For M: μo = 0.0534, σo = 0.00543, 2σo / μo  = 20%
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M response 

surface 

M output 

PDF

M. J. M. Krane   School of Materials Engineering   Purdue 

University



Purdue Center for Metal Casting Research

School of Materials Engineering

• Another sngle input case

• Thermal boundary conditions 
are difficult to measure

• Frequently, experimental 
correlations are published 
without uncertainty information

• Three different input 
distributions were considered
– σ = 450 W/m2K (30%μ)

– σ = 300 W/m2K (20%μ)

– σ = 150 W/m2K (10%μ)
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Uncertainty in heat transfer boundary condition

tS response surface 

M response surface 
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The output uncertainty is lower than the input uncertainties

Boundary conditions need to be known better than 10% to 

have a solidification time prediction within 5%
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h σi ts σo

2σ = 30% μ 2σ = 23.2% μ

2σ = 20% μ 2σ = 14.5% μ

2σ = 10% μ 2σ = 7.2% μ

Effect of heat transfer coefficient uncertainty:

Solidification time
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Effect of heat transfer coefficient uncertainty:

Macrosegregation

h σi M σo

2σ = 30% μ 2σ = 16.2% μ

2σ = 20% μ 2σ = 10.4% μ

2σ = 10% μ 2σ = 5.2% μ

Slower heat transfer leads to larger mushy zones and more 

buoyancy driven macrosegregation

Wider range of mushy zones allows more flow at the low h

side of PDF and less at high h; skews PDFs to low M
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• Material property values are 
measured with some 
uncertainty (is it reported?)

• Three different levels of 
uncertainty in input distributions 
were analyzed:
– 2σ = 20% μ

– 2σ = 15% μ

– 2σ = 10% μ
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ρs = 2750 kg/m3

Δρ = ρl - ρs = -290 kg/m3

k = 137.5 W/mK

cp = 1006 J/kgK

Lf = 390000 J/kg

Uncertainty in multiple inputs:

material properties
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• Uncertainties in these several 

input parameters combine to 

cause larger uncertainties in the 

solidification time than htc alone

• Large uncertainty in ts even 

when the properties are known 

within 10%

How do the individual properties 

affect ts?
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Input σi ts σo

2σ = 20% μ 2σ = 36% μ

2σ = 15% μ 2σ = 26% μ

2σ = 10% μ 2σ = 18% μ

Effect of materials property uncertainty:

Solidification time

M. J. M. Krane   School of Materials Engineering   Purdue 

University



Purdue Center for Metal Casting Research

School of Materials Engineering

• “Sensitivity” is defined as

𝑆𝑖 ≈
𝜕 መ𝑓

𝜕𝑝𝑖
𝑛 𝜎𝑖

(complete definition in 

Morris, Technometrics, 1991, and 

Campolongo and Cariboni, Env. Mod. Softw., 2007)

• Density (and liquid density level) has 
largest effect on solidification time

• Density affects sensible and latent 
thermal capacity and fluid flow

• Shrinkage driven flow (through Δρ) has 
the smallest effect on ts

• Latent heat and thermal conductivity 
are also important
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Sensitivities for 2σ=0.15μ case 

Sensitivity of solidification time to uncertainty in 

material properties
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2σ=0.15μ
Sensitivities

• M less sensitive than tS to properties 

• St ≈ 0.2 for this alloy (mushy zone 

thermal capacity and thickness 

dominated by latent heat)

• Macrosegregation is most sensitive to 

density (inertia, thermal capacity) and 

latent heat (thermal capacity)

• M is more tolerant of uncertainty in k, 

cp, and solidification shrinkage
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Sensitivity of macrosegregation to uncertainty in 

material properties

Input σi M σo

2σ = 20% μ 2σ = 22% μ

2σ = 15% μ 2σ = 15.6% μ

2σ = 10% μ 2σ = 10.6% μ
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Effect on macrosegregation of uncertainty in 

material properties, heat transfer rate, 

and dendrite arm spacing

• Heat transfer, material property, and λ

uncertainties analyzed together for M

• Dendrite arm spacing: 2σ = 15%

• Material properties: 2σ = 15%

• Heat transfer: 2σ = 20% 

k and cp had the least

influence on M and 

were neglected here
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Macrosegregation Uncertainty and Sensitivity

• Mean M = 0.055

• 2σ of M = 0.0076 (14%)

• M has the largest average 

sensitivity to λ (controls flow)

• Heat transfer coefficient and 

density are next largest

• M has the smallest average 

sensitivity to solidification 

shrinkage

25
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Observations from application to static casting

• M and ts most sensitive to density, perhaps easiest property to

measure with low uncertainty

• Ranking of sensitivity depends on output of interest

(e.g., λ important to M but not tS)

• Perhaps it is easier to reduce uncertainties in measurement of

properties than, say λ or h – pick low-hanging fruit that has impact

• This type of analysis can help us answer Dr. Quested’s question:

what is the payoff to driving the uncertainty in property values

lower? (and which property values?)

• But, how do we obtain the uncertainties of the inputs? Is that

information available?
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A commercial application: 

Modeling High Pressure Die Casting 
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Use UQ process on application in real industrial setting

– High pressure die casting of aluminum part for car transmission

– Use commercial software for process modeling (license)

North American Die Casting Association (NADCA)

External 

shrinkage

Internal 

shrinkage

Work sponsored by Fiat-Chrysler Automotive, Kokomo Casting Plant, Indiana, USA

Outputs of Interest:

– Location and extent of porosity

– Solidification time
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High Pressure Die Casting Process
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Casting cycle:

Die Close & Solidification

Cover Die 

remove

Casting 

ejected
Lubricate Air 

Blowing

Die Open & Delay Time

20s

Die 

Close
Metal

Filling

Metal

Filling

North American Die Casting Association (NADCA)
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Simulation of HPDC Process
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• Commercial software: MAGMA

• 9 Heating Cycles + 

1 “Production” Cycle

• A380 part, H13 steel mold

• Initial Al temperature = 643 ℃

• Initial die temperature = 25 ℃

• Default Feeding Effectivity: 30%

• No filling process simulation

• No fluid flow

• Types of uncertainty:

– Material properties

– Boundary conditions
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Property uncertainty: density and thermal conductivity
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Density
Thermal 

conductivity

Experimental uncertainty of ±2% Experimental uncertainty of ±6%

Overfelt et al., High Temp.-High Pressures, 2002 Brandt et al., Int. J. Thermophysics, 2007
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Property uncertainty: heat capacity and latent heat
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• Data for A380 not available

• Used data for A319 (similar composition) 

• Experimental uncertainty of ±5%

Experimental uncertainty of ±2.5%

Rudtsch, Thermochimica Acta, 2002

Đurđević et al,  Metalurgija, 2003

Heat 

capacity

Latent 

heat
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Uncertainty in Porosity due to property uncertainty
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• µ = 1.01%, σ = 0.03%, 2σ/µ = 5.9%

• Small effect on porosity predictions

Lf k         c        ρ
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Uncertainty in fraction liquid remaining

due to property uncertainty
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What is probability that there is liquid 

left at ejection time?

12.5s 15s

17.5s 20s

Colored regions are 

volumes not fully solid

% liquid
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Uncertainty in fraction liquid remaining

due to property uncertainty
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Cannot ensure casting fully 

solid at 20 s, but 99% solid is 

possible

Current process reasonable, 

with no one property 

dominating output uncertainty
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Uncertainty in Cooling Conditions: straight tubes
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𝑁𝑢𝐷 = 0.023𝑅𝑒𝐷
0.8𝑃𝑟0.3

Dittus-Boelter equation

Under process conditions, heat transfer 

coefficient is (in W/m2K): 

µ=8000, 2σ = 1600 

(20% uncertainty)

Jo et al., Nuc. Eng.Tech., 2014
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Uncertainty in Cooling Conditions: cooling jets
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• Data fit to correlations for heat transfer 

coefficients as function of water flow rate

• Under process conditions, heat transfer 

coefficients are (in W/m2K):

• Zone 1: µ = 234.01, 2σ = 27.84

• Zone 2: µ = 3509.18, 2σ = 427.8

• 2σ/ µ ≈ 12% for both cases 
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Uncertainty in Cooling Conditions: metal-die interface
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Dargusch et al, Adv. Eng. Mater., 2007

HTC is highest at end of filling, with pressure on liquid.

HTC decreases as shrinkage pulls metal from die.

Experimental 

uncertainty of 

±30%
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Uncertainty in Porosity due to HTC uncertainty
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• Predicted porosity uncertainty is nearly 3 

times larger than that due to material 

properties

• Only interfacial heat transfer has an effect 

on porosity development (dominant cooling 

mechanism)

µ = 1.3%, σ = 0.11%

2σ/µ = 16.9%
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Sensitivity of fraction liquid remaining

to HTC uncertainty
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Fraction liquid results are most 

sensitive to uncertainty in 

interfacial heat transfer
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Response surface for fraction liquid remaining

due to HTC uncertainty
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Use of polynomials for response 

surfaces can lead to nonphysical 

results (e.g., fraction liquids < 0)

Need to correct surrogate 

model as a function of IHTC
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Uncertainty in fraction liquid remaining

due to HTC uncertainty
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Current analysis suggests that the 

highest fraction solid with almost 

100% certainty is ~98%

Uncertainty in interfacial heat 

transfer produces large 

uncertainty that all metal is 

solid at ejection
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Observations from application to 

commercial HPDC process

• Ranked influence of material property and boundary condition

uncertainty on PDFs of porosity and remaining liquid

• Most important factor is uncertainty in interfacial heat transfer

• Uncertainty in other thermal conditions not critical for predicting

outputs of interest

• Material properties have only small influence

• Under current conditions, there is a probability that some liquid may

remain at part ejection: Is this a problem?

• Can use UQ process in alterations of old or design of new

processes
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Recent and forthcoming articles on this topic

• K. Fezi and M.J.M. Krane, “Uncertainty Quantification in modeling

equiaxed alloy solidification,” International Journal of Cast Metal

Research, published online, 8/10/16.

• K. Fezi, M. J. M. Krane, "Uncertainty quantification in solidification

modeling," in Modeling of Casting, Welding and Advanced

Solidification Processes - XIV, H. Yasuda et al (eds.) IOP (2015).

• K. Fezi and M. J.M. Krane, “Uncertainty Quantification in modeling

metal alloy solidification,” in review.

• A. Plotkowski and M.J.M. Krane, “Quantification of epistemic

uncertainty in grain attachment models for equiaxed solidification,”

in review.

• K. Fezi and M. J. M. Krane, “Uncertainty propagation in numerical

modeling of aluminum direct chill casting,” in review.
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