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Rogue Waves

Rogue waves (or freak waves) are isolated structures with unusually high
amplitude, such as the wave in the 1834 woodcut “Fuji seen from the sea” by
Katsushika Hokusai.
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Wave height measurement as a function of time showing the rogue wave
observed on 1st January 1995 at the Draupner oil rig in the North Sea off
the coast of Norway
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In recent years “rogue waves” have been observed in other contexts beyond
the ocean

e Optical fibres (Solli et al. [2007], Kilber et al. [2010]).

» “How freak or rogue waves form in the ocean is not well understood, but
new investigations suggest a mechanism for these waves that may also
allow formation of high-intensity pulses in optical fibers”

e Atmospheric waves (Stenflo & Marklund [2010])

e Bose-Einstein condensates (Bludov, Konotop & Akhmediev [2009])
e Waves in superfluids (Ganshin et al. [2008])

e Plasma Physics (Bailung, Sharma & Nakamura [2011])

e Finance (Ivancevic [2009], Yan [2011]).

» The Ivancevic option pricing model

Y 0% )

154—50@"‘6““ =0
where (S, t) the option price, S is the asset price, o the volatility and
5 depends on the interest rate.
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Time-wavelength profile of an optical rogue wave
obtained from a short-time Fourier transform
(Solli, Ropers, Koonath & Jalali, Nature [2007])
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Rational Solutions of the
Nonlinear Schrodinger Equation

100y + Py & %|¢|2¢ =0
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Nonlinear Schrodinger Equation

e A soliton equation solvable by inverse scattering (Zakharov & Shabat
[1972]); 0 = 11s “focusing” and ¢ = —1 is “de-focusing”.

-

o =1 : Bright soliton o = —1 : Dark soliton
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Nonlinear Schrodinger Equation

iy + Yoy + 300002 = 0, o=+1

e A soliton equation solvable by inverse scattering (Zakharov & Shabat
[1972]); 0 = 11s “focusing” and ¢ = —1 is “de-focusing”.

-

o =1 : Bright soliton o = —1 : Dark soliton

e Arises in numerous physical applications including:

» water waves (Benney & Roukes [1969]; Zakharov [1968]);
» optical fibres (Hasegawa & Tappert [1973]);
» plasmas (Zakharov [1972]);

» ocean waves (Peregrine [1983]);
» magnetostatic spin waves (Kalinikos et al. [1997]; Xia et al. [1997]).
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Rational Solutions of the focusing NLS Equation
(Akhmediev, Ankiewicz & Soto-Crespo [2009])
(Akhmediev, Ankiewicz & PAC [2010])

Rational solutions of the focusing NLS equation

ity + e + 30 =0
have the form

Gz, itH, (x, ”
Yz, t) = {1 — 4 ( Zn—i(_xft) ( t>}exp (5115)

where F),(x,t), G,(z,t) and H,(z,t) are polynomials in x and ¢ with real coef-
ficients, and F,(z,t) has no real zeros. The polynomials F),(z,t), G,(z,t) and
H,(x,t) satisfy the Hirota equations

A(tDy+ 1)H, o F,, + D>F, e F,, — 4D*F},,«G,, = 0

D/GyeF, +tD2H, e F, =0

D:F, e F, = 8G2 + 8t°H> — 4F,G,,

with D, and D, the Hirota operators

D546 = (5= ) FlanFla

dil?l dZCQ

T1=T9=T
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Rational Solutions of the focusing NLS Equation

The first few rational solutions of the focusing NLS equation

iy + Yup + 3P0 =0
have the form
o, t) = exp (3it)

1+ it N
iz, t) = {1 —4x2+t2+1}exp (Lit)

Gz, itHy(x, .
Po(x,t) = {1 — 1 ( 2;;55 (@, } exp (3it)

where
Go(x,t) = 3{x* + 6(t* + 1)2* + 5t* + 18¢* — 3}
Ho(x,t) = 3{zt + 2(t* = 3)2* + (* +5)(t* — 3)}
Fy(x,t) = 2% + 3(¢% + Da’* + 3(t2 — 3)%2% + % + 27t + 99¢* + 9
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Rational Solutions of the focusing NLS Equation

The first few rational solutions of the focusing NLS equation
ity + Y + 306 = 0
have the form
o, t) = exp (3it)

I +1t :

'le(l',t): {1_4$2+t2+1}exp (%lt)
Golx, t) + it Hy(z, t .
%(x’”:{l_‘L = }2<xl,t>2<x >}6Xp (i)

where

Go(x,t) = 3{x* + 6(t* + 1)2* + 5t* + 18¢* — 3}

Ho(x,t) = 3{zt + 2(t* = 3)2* + (* +5)(t* — 3)}

Fy(x,t) = 2% + 3(¢% + Da’* + 3(t2 — 3)%2% + % + 27t + 99¢* + 9
Remark

The solution v (x,t) is the Peregrine solution (Peregrine [1983]).
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Generalized Rational Solutions
of the focusing NLS Equation

Dubard, Gaillard, Klein & Matveev [2010] show that the focusing NLS
equation

Wy + Vuy + 3|0 =0
has generalized rational solutions in the form

N | B B ag(a:,t;oz,ﬁ) +iﬁ2(aﬁ,t;oz,ﬁ) o (L
¢2(5’77t70475>— {1 4 ﬁz(x,t;og,ﬁ) }e p<2 t)

where
Gz, t; 0, B) = z* + 6(¢% + 1)z + 5t* + 18t — 3 — 20t + 26w
Ho(z, t:a, B) = t{z* + 26> = 3)2® + (2 +5)(t* = 3)} + a(z” — >+ 1) + 2Btz
Fy(z, 6o, B) = 28 4 3(8% + 1)a* + 3(¢% — 3)%2% + ¢° + 27t* + 99¢% + 9
+ 20t (32" — t* — 9) + a*— 2Bx(z* — 3t* — 3) + 3

with o and [ arbitrary constants — see also Dubard & Matveev [2011,
2013]; Kedziora, Akhmediev & Ankiewicz [2011, 2012, 2013].
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Generalized Rational Solutions
of the focusing NLS Equation

Dubard, Gaillard, Klein & Matveev [2010] show that the focusing NLS
equation

Wy + Yy + 3|00 =0
has generalized rational solutions in the form

ot o B) — Go(z,t; 0, B) + ills(w, t; o, B) o (L
¢2( 7t7 75) { FQ([C t;O&,B) }e p( t)

where
@2(33, tia, B) = 2 + 6(t7 + 1)2° + 5t* + 18t° — 3 — 2at + 2B«
Ho(z, t:a, B) = t{z* + 206> = 3)a® + (2 +5)(t* — 3)} + a(z” — >+ 1) + 2Btz

P

S(z,t o, B) = 28 4+ 3(¢% + Da* + 3(* — 3)%0* +° 4+ 27t + 99* + 9

+ 20t (32% — t* — 9) + a*— 2Bzx(z* — 3t* — 3) + 5
with o and [ arbitrary constants — see also Dubard & Matveev [2011,
2013]; Kedziora, Akhmediev & Ankiewicz [2011, 2012].

e These solutions have now been expressed in terms of Wronskians, see
Gaillard [2011, 2012, 2013, 2014, 2015, 2016]; Guo, Ling & Liu [2012];
Ohta & Yang [2012], ... .
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Rational Solutions of the Boussinesq Equation

2 1
Ut + Ugy — (u )xm — 3Uzzar = 0
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Boussinesq Equation

2 1
Ut + Ugy — (U )x:c — 3Ugpax = 0

e A soliton equation solvable by inverse scattering (Ablowitz & Haber-
man [1975], Zakharov [1974]).

u(z,t) = 267 sech?{k(x — ct)}, c=+4/56%— 1
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Boussinesq Equation

2 1
Ut + Ugy — (U )x::r; - guxxa:x =0

e A soliton equation solvable by inverse scattering (Ablowitz & Haber-
man [1975], Zakharov [1974]).

u(z,t) = 267 sech?{k(x — ct)}, c=+4/56%— 1

e Arises in several physical applications:

» propagation of long waves in shallow water (Boussinesq [1871],
Whitham [1974]);

» one-dimensional nonlinear lattice-waves (Toda [1975]);
» the description of vibrations in a nonlinear string (Zakharov [1974]);
» ion sound waves in a plasma (Scott [1975]).
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Rational Solutions of the Boussinesq Equation

Ut + Ugy — (u2)xx — %uxxxa: =0 <1)

e The Boussinesq equation (1) has symmetry reductions which are solvable
in terms of P;; and Pry. Hence rational solutions can be obtained in terms
Yablonskii-Vorob’ev polynomials, which describe rational solutions of
P, and in terms of generalised Hermite polynomials and the gener-
alised Okamoto polynomials, which describe rational solutions of Pyy.
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Rational Solutions of the Boussinesq Equation

Ut + Upy — (U2)xx - %uxxxx =0 <1)

e The Boussinesq equation (1) has symmetry reductions which are solvable
in terms of P;; and P;y. Hence rational solutions can be obtained in terms
Yablonskii-Vorob’ev polynomials, which describe rational solutions of
P, and in terms of generalised Hermite polynomials and the gener-
alised Okamoto polynomials, which describe rational solutions of Pyy.

e There are also generalised rational solutions of the Boussinesq equa-
tion (1), which involve polynomials that are analogues of the Burchnall-
Chaundy/Adler-Moser polynomials that arise in the description of ra-
tional solutions of the Korteweg-de Vries equation (PAC [2008]).

Uy + 66Uty + Uppr = 0
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Rational Solutions of the Boussinesq Equation

Ut + Upy — (U2)xx - %uxxxx =0 <1)

e The Boussinesq equation (1) has symmetry reductions which are solvable
in terms of P;; and P;y. Hence rational solutions can be obtained in terms
Yablonskii-Vorob’ev polynomials, which describe rational solutions of
P, and in terms of generalised Hermite polynomials and the gener-
alised Okamoto polynomials, which describe rational solutions of Pyy.

e There are also generalised rational solutions of the Boussinesq equa-
tion (1), which involve polynomials that are analogues of the Burchnall-
Chaundy/Adler-Moser polynomials that arise in the description of ra-
tional solutions of the Korteweg-de Vries equation (PAC [2008]).

Uy + 66Uty + Uppr = 0

e However there are other rational solutions of the Boussinesq equation.

Ablowitz & Satsuma [1978] obtained the rational solution

4(1 — x4+ t2) 0? 5 .o
—2— In(1 t

A+22 122 05 n(l+ 27 +1%)

by taking a long-wave limit of the two-soliton solution.

u(x,t) =

University of Kent



Rational Solutions of the Boussinesq Equation

Ut + Upy — (U2)xx - %uxxxx =0 <1)

Making the transformation
2

0
u(x,t) = 2$ In f(x,t)
yields the bilinear form
(Df + D2 —2D}) fef =0 (2)
with D, and D; the Hirota operators. This has solutions f,(z,?) that are
polynomials of degree n(n + 1) in both = and ¢, with f,(z,¢) > 0 for all z,t € R

filz,t) =a* +t*+1
folw,t) = a® + (3" + 25) T+ (3’54 3017 — 128) g2 4 46 4 LTyt y 4742 4 625
fa(z, t) = 22 + (667 + B) 2" + (15¢* + 23047 + 285) 2

4+ (20t6 + 154Ot4 + 18620t2 + 75460) 5136

8 1460 6 37450 4 | 2450042 5187875 .4
+ (15¢° 4 15040 30204 4 20002 — 28D o

+ (6t10 4+ 19Ot8 + 35420t6 4900t4 4+ 188650t2 + 15928550) 5132
12 1 4 2
412 4 @t 0 + 1445t8 + 798980t6 + 16329413725t + 300?38750t 4+ 8786852661025

These polynomials appear in Pelinovsky & Stepnyants [1992]
University of Kent
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Nonlinear Schrodinger equation
Fi(z,t)=2" +t° + 1
Fy(a,t) = (2 +12)° + 2" — 92> — 3)2” + 27¢" + 99¢* + 9
Fy(z,t) = (22 +19)° + 6210 — 45(21 — 3)2® — 180(¢* — 3> — 13)2°
+ 15(4¢° — 90" 4 900¢* + 225) "
+ 6(45t° + 2250t° + 13050t — 6075t + 2025)2
+ 126" 4- 3735¢° + 15300t + 143775¢* + 93150¢% + 2025

Boussinesq equation
filz,t) = 2>+ +1
folx,t) = (2" + t2)3 + 2ot + (3067 — 122) o? 4 Lgt 4 4Dy 4 05
fa(z,t) = (22 +2)" + Lal® 4 (23067 + 20) o 4 (180044 4 1862042 | ToI60) 56
1 (146046 4 37450754 n 24500152 5187875 !

243
4+ (190158 4 35420t6 49oot4 4 188650t2 4 159;2855()) 72

58,10 | 1445,8 | 79898046 |, 16391725,4 | 30089675042 | 878826025
Tt t+ e 7E S 2 M 7 A 751
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Generalised Rational Solution of the Boussinesq Equation

The Boussinesq equation
2 1
Ut + Ugy — <u )xaz — 3Ugzax = 0

also has the generalised rational solution

- 0> ~
U2<$,t;&,5> — 2—21I1f2<33,t;&,5>
ox
with
fala,t;a, B) = (2% +12)° + Bat 4 (3042 — 128) g2 4 Lyt 4 41542 4 6%
+ 2ot (3$2—t2+§) + 28z (I‘2—3t2—%) + a? 4 B2
= fz(.r,t) + 2ot (3x2 _ 2 + g) + 28x (:E2 _ 32 %) + o2 4 52

with o and 3 arbitrary constants.
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a =0 =100
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o =100, 8 = —100 o =10, 8 = 100
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The next generalised rational solution is

0?
uz(x,t; o, B) = 28— In fg(ﬂ?,t; a, )
with
]73(x, ta, B) = fa(x,t) + 2atps(x, t) + 2Bxqa(x, t) + (042 + ﬂZ)fl(x, t)
= (2% + t2)6 + B0+ (23047 + 28) 2°
T (Lﬂrot‘l T Mﬂ s M) 20
3

4 2 4
+ (1460t6 + 3745Ot + 24500t 5187875) T

243
+ (190¢° + 35420t6 4900754 188050, | 150780550 .2

58,10 | 1445,5 | T95980,6 , 163917254 300896750,2 | 878826025
R i T e e 7 S i a5

+ 20t {t° — (92% + T)t* — (5™ + 1902”4 245)t°
+ 52° + 105" — 6652* + 125051

+ 28z {2° — (9% — 13)2" — (5¢" + 230t* + 245)2”
+ 5t° 4+ 45¢* + 535¢° 4 120

+ (@ + B (z* + 7+ 1)

with o and $ arbitrary constants.
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ﬂg(ﬂf, ta v, 5)

o = 3 = 10000
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ﬂg(ﬂf, ta v, 5)

o =10% 5 = 10*
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ﬂll(xa ta v, 5)

10°
University of Kent

b=

o =

— 107

B

o=

B =10°

o =



30

10 20 30

=30

Uy (w, t; 0, 10%)

University of Kent



Theorem (PAC & Dowie [2017))

The generalised rational solutions of the Boussinesq equation

2 1
Ut + Ugy — <u )xx - §uxa:a:3: =0

have the form
2

an+1($,t;@,5) ZQ%IHE’H-l(th;Oéaﬁ)) n > 1
x
with
ﬁ”Hrl(xa t; a, 6) — fn+1<x7 t) + 205tpn(x7 t) + 2655%1(377 t) + (CVQ + 52>fn—1<x7 t)
where f,(x,t), pu(x,t), q.(x,t) are polynomials of degree n(n + 1) in x and t.

University of Kent



Theorem (PAC & Dowie [2017))

The generalised rational solutions of the Boussinesq equation

2 1
Ut + Ugy — <u )xx - §uxa:a:3: =0

have the form
2

an+1($,t;@,5) ZQ%IHE’H-l(th;Oéaﬁ)) n > 1
x
with
ﬁ”Hrl(xa t; a, 6) — fn+1<x7 t) + 205tpn(x7 t) + 2655%1(377 t) + (CVQ + 52>fn—1<x7 t)
where f,(x,t), pu(x,t), q.(x,t) are polynomials of degree n(n + 1) in x and t.

Theorem (PAC & Dowie [2017])
The functions

@$<xat> — tpn(ilf,t) iian(CE,t), n=>1
are also solutions of the bilinear equation
(D7 + D2 —iD}) fef =0

i.e. the same bilinear equation as satisfied by f,(x,t) and fn(aj, t;a, B).
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Nonlinear Superposition of Solutions

Corollary (PAC & Dowie [2017])

The generalised rational solutions of the Boussinesq equation

2 1 _
Ut + Ugy — (’U, ):Ua: - §uxa::1::c - O

have the form

- 0%~
un-l—l(x)t;&aﬂ) :2W1nfn+1(xat;aaﬁ)7 n > 1
X

with
Foct(z, t:a, B) = fosr(z, 0)+ (@ +18)0F (2, 1) + (a — iB)O; (z, 1) + (> + ) fur(z, 1)

where f(5,t:0, 8), fur1(o,1), OF (2, ), ©;(x,1) and f, 1(x,t) are all indepen-
dent solutions of the bilinear equation

(D; + D2 —1D}) fef =0
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Theorem (Ankiewicz, Bassom, PAC & Dowie [2017])

Suppose that u,(z,t) is a rogue wave solution of the Boussinesq equation

2 1
Ut + Ugy — <u )xx - §uxajazx =0

/ / 2w, t)dedt = in(n +1)
/ / C(x,t)dedt =n(n+1)

then

and
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Theorem (Ankiewicz, Bassom, PAC & Dowie [2017])

Suppose that u,(x,t) is a rogue wave solution of the Boussinesq equation

2 1
Upt + Uggy — (’U, )xa: - §uxa::z::c = (

/ / 2(z,t)dz dt = In(n+1)
/ / S(z,t)dodt = n(n + 1)

Conjecture (Ankiewicz & Akhmediev [2015])
Suppose that V,(x,t) is a rogue wave solution of the NLS equation

i% + Yp + %W\% =0

——/QL/ (12 (2, 8)] — 1] dzdt = Ln(n + 1)

2 2
wnl ) = 29I e t), 2 )] = 1 = 22 I (e, )
Ox Ox

then

and

then

University of Kent



Conservation Laws

Definition. A conservation law is an equation of the form

a_T+a_X—O
ot Or

where T'(x,t) is the conserved density and X(z,t) the associated flux. The

integral
/ T(x,t)dr =c

©. 9]

with ¢ a constant, is called a constant of motion, with ¢ interpreted as a
timelike variable. It follows that

/ X(z.t)dt = k

with £k also a constant.

To study conservation laws for the Boussinesq equation, we consider the
system

uy + v, =0

v+ (U?)y — Uy + %umx =0

University of Kent



The first few conserved densities 7}(z,¢) and associated fluxes X;(x,t) for
the system are

Ti(x,t) = u, Xi(z,t) =0
Ty(x,t) = v, Xo(z,1) = v’ — u+ $uy,
Ts(x,t) = uv, X3(z,t) %ug - %U2 — %uQ — %ui + %uum
Ty(x,t) = %u?’ + 02 —u? — %ui, Xy(z,t) = 2u’v — 2uv + %vum — %uxvx
Hence the first few constants of the motion are
0 ©.]
/ u(x,t)dr = ¢, / u(x,t)v(x,t)dr = c3
— 00 —00
(0. @] o0
/ v(z,t)dr = ¢, / (Bu’ + v — v’ — tuf) do = ¢
— 00 —00
with ¢;, ¢, c3 and ¢, constants, and the associated fluxes are
0. @] oo
/ v(x,t)dt = ky, / (%u3 + %112 — %uQ — %ui + %uum) dt = ks
— 00 —00

/ (u2 —u—+ %um) dt = ko, / (QUQU — 2uv + %vum — %uxvx) dt = ky

© 9] @)

with ki, k9, k3 and k; constants. For the algebraically decaying rational solu-
tions of the Boussinesq equation thenc; =0and k; =0,for j =1, ... 4.
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Rational Solutions of the
Kadomstev-Petviashvili I Equation

(Vi 4+ 6V Ve + Vige)e — 3V = 0
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Kadomstev-Petviashvili Equation

(VT—|—6VV§-|—V§§§)§-|—302V7777:O, o’ = +1

e The first 2 + 1-dimensional equation found to be solvable by inverse scat-
tering (Dryuma [1974], Zakharov & Shabat [1974]).
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Kadomstev-Petviashvili Equation

(VT—|—6VV§-|—V§§§)§-|—302VW:O, o’ = +1

e The first 2 + 1-dimensional equation found to be solvable by inverse scat-
tering (Dryuma [1974], Zakharov & Shabat [1974]).

e The case o0 = iis known as the KPI equation and the case 0 = 1 is known
as the KPII equation. Inverse scattering is different for the two cases:

» Riemann-Hilbert method for KPI (Manakov [1981], Segur [1982],
Fokas & Ablowitz [1983]),

» 0 method for KPII (Ablowitz, Bar Yaacov & Fokas [1983]).
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Kadomstev-Petviashvili Equation

(VT—|—6VV§-|—V§§§)§-|—302VW:O, o’ = +1

e The first 2 + 1-dimensional equation found to be solvable by inverse scat-
tering (Dryuma [1974], Zakharov & Shabat [1974]).

e The case o0 = iis known as the KPI equation and the case 0 = 1 is known
as the KPII equation. Inverse scattering is different for the two cases:

» Riemann-Hilbert method for KPI (Manakov [1981], Segur [1982],
Fokas & Ablowitz [1983]),

» 0 method for KPII (Ablowitz, Bar Yaacov & Fokas [1983]).

e Arises in several physical applications:
» Derived by Kadomtsev & Petviashvili [1970] to model ion-acoustic
waves of small amplitude propagating in plasmas.
» Surface water waves (Ablowitz & Segur [1979]).

» Two-dimensional shallow water waves (Segur & Finkel [1985], Ham-
mack et al. [1989]).
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It is well-known that KPI
(Ve + 6V Ve + Veee)e = 3Viy = 0
has the 1-lump solution (Manakov et al. [1977])

- 0 2 2 _ (5—37)2—772—1
V(€a7777'>—28—§21n{<€—37'> +n"+1} = 4{<€_37_)2+772+1}2
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The focusing NLS equation
i¢t+¢xx+%|¢‘2w =0 <1)

has the rational solutions in the form

o= {1 S 0]

therefore

|w<x7 t; Q, ﬁ)|2 1= 16G2<x7 t; «, 5) + 16H2(CB; t; Qe 6) — 8F<.CIZ‘, t; Q, B)G(gj, t; Q, 6)

F2(z,t; «, B)

82

Dubard & Matveev [2011, 2013] (see also Gaillard [2016]) show that

2
V(€ n,T)= 2;—52 In F(§ — 37, m; v, —487)

=5 ([v(a, ;0. B = 1)
is a solution of the KPI equation
(Ve + 6V Ve + Vige)e — 3Vyy = 0 (2)

This relates solutions of the focusing NLS equation (1) and KPI (2).
University of Kent
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Letzr =¢—3r,t=nand f = —487 in
ES(x,ta, B) = 2% + 3(t2 + Da* + 3(t2 — 3)%2? + 15 + 27t + 992 + 9
+2at(32° —t* — 9) + o — 2Bx(x* — 3t* — 3) + °
then
Fy(&,m,m5a) = Fy™(€ — 37, m; a, —487)
satisfies
(D¢ + DeD- — 3D2) Fae Fr =0
which is the bilinear form of the KPI equation
(Ve + 6V Ve + Vige)e — 3V3y = 0

Therefore 2
V(€7 n, T, CY) — 28—€2 hl FQ(fa n, T, Oz)

is a rational solution of the KPI equation (2).

Further N
/ V(E,n,7)dE =0

o0

and
V(€ T)— 0, as £ 4+n* = o0
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Rational Solutions of KPI
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Reductions of KPI to the Boussinesq equation

If in KPI
(Ve + 6V Ve + Vege)e — 3Viyy = 0

we make the reduction

then we obtain the Boussinesq equation

Ut + Uggy — <u2>xaz — %ux:c:z::c =0
Hence, if
0? b
uw(x,t) = 2—In f*Yx, 1)
ox

is a solution of the Boussinesq equation, then

oA b
V(Sa n, T) — 28—62 In f q<€ o 37—7 77)

1s a solution of KPI.
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Reductions of KPI to the Boussinesq equation

If in KPI
(Vr + 6V Ve + Vege)e — 3Viyy = 0

we make the reduction
V(€& n,T)=u(z,t), r=&(—31, t=n
then we obtain the Boussinesq equation

2 1
Ut + Ugy — <u )x:c — 3Ugzax = 0

Hence, if
62
w(z,t) = 2= In f*Yx, 1)
ox
is a solution of the Boussinesq equation, then

2
V(EnT) = 25 In 2 = 3r.m)
is a solution of KPI.
o If 7%z, t) = 2% + t> + 1 then we obtain the 1-lump solution of KPI

_ 3_2 a2 2 _ (=377 —n" -1
VG mT) = “oe e — S = e3Pt i
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Using the second rational solution of the Boussinesq equation we obtain the
KPI rational solution

2
V(E,n. 7, 6) —28‘%1an (€,m,75 0, B)

where

A ma,B) =€ — 1878 +3 (457 + 0 + 2) ¢ — 12 (4577 + 3 + Z) &
+{3n" +18 (97 + 3) n° + 12157" + 4507° — 125}§
—~ {187174 + 36 (972 +5) 70" + 14587 4 9007° + 207 }¢
+1) —|—27(7‘ +5)n' —|—9(27T +3077 + 2) 0
+7297°% + 6757 — 1257% + fe
+ 2« {35277 — 181 — 0’ + (277'2 + g) n}
+28{& =9 — (3> = 217" + 3) £ = 217 + 9" + 7}
+a’+
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Compare (¢, 7,7 ) and f,%(¢,n,7; a, B)

RS, m;a) =

YEn, T, B)

& — 187 + 3 (4577 +° + 1) € — 12 (457° + 3°— 5) 7’

+ {3n* + 18 (97°— 1) p* + 12157 — 70277 + 27} £

— {187n" 4+ 36 (97° + 5) 70" 4 14587°— 22687 + 4507 }£
+n°+ 27 (T + 1) ' +9 (277" + 7877 + 11)

+7297°— 23497 4 341177 + 9

+2a {3 — 18—’ +9(37°— 1) n} + &

= €0 1876° + 3 (4577 + P + 2) &' — 12 (457 + 3* + B) 7

+ {3n* + 18 (97%+ 2) n* + 12157 4 4507° — 125}g

-~ {187774 +36 (977 +5) Tn® + 14587+ 9007° + 207 ¢
—|—27(T +5)n +9(27T4+30¢2+48if’)n

+ 7297 + 67571 — 12577 + 822

+ 2« {3§ n— 186ty — 1’ + 9 (37‘2+ 8) 77}

+26{& =9 — (3" — 277" + 3) € — 277° + 91" + 7}

+a’+ 7
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Now consider the general expression, with parameters 1, & and 3
FENEn, T, B) = €5 — 1878 + (3% 4 13577 — 6% + 9)¢*
— {367n* +5407° — 12(64° + 6 — T)7 } &
+ {3n" +18(97% — 2pu + 1)n* + 12157
—54(6p% + 1200 — 5)7° + 9pu(p + 2) (> — 2+ 2) } €
— {187n" 4+ 36(97° + 5)7n° + 14587° — 324(2* + 6 — 1)7°
+18u(3p® + 12u% — 2u 4+ 12)7} €
+ 0% + (2777 + 64 + 121 + 9)n*
+ {24370+ 54(6p + T) 7>+ 9(pt + 4p® +6p° — A+ 4) by’
+ 72970 — 81(p? + 24p — 1)1
+ 99t + 7217 + 150p% + 1321 4 16)72 + 9(p% — 2 + 2)?
+ 2« {377§2 —18mné —n° +3 [97’2 — pu(p + 2)} 77}
+28 {6 —976* — 6(n* — 97 + P& + 9r* — 2777
+ 337 + 12u + 47} + o+ 5

which has both FI's(¢.n, 7 a) and f;N(g ,m, T;a, 3) as special cases:
F3S(&,m, 7 a) = F5™(&,m,7:1,0,0)
YU, T, B) = 5N (&, 753, 0, B)
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,02(57 7, 07 22 07 O)

F: |

u=3/4
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For u < u*, the solution v5(£,n,0; 1,0,0) has two peaks on the line n = 0,
which coalesce when 1 = 1* to form one peak at £ = n = 0. By considering

when

o 8(3pt + 120 + 16p* — 6) )
£ (1?2 — 2p + 2)?

then ;/* is the real positive root of
3ut +120°% + 16p% — 6
=3 u2+2(1—§\/6)u+2—f6} [u2+2(1+§f6)u+2+\/6 =0

—V<€7 07 Oa Ly 07 O)

1.e.

W= —1+16+ %\/—3 +3v/6 = 0.5115960325
For 1 > u*, it can be shown that
Ap(p + 2)
(1> — 24+ 2

increases until it reaches a maximum height of 4(2++/5) when p = 3(1+/5),
which is the golden mean!

V(0,0,0; 1,0,0) =
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Ablowitz, Chakravarty, Trubatch & Villaroel [2000] show that KPI
(Ve + 6V Ve + Veee)e = 3Viy = 0

has rational solutions in the form

82
vm<€7777 >_2£1HF (5 n, T )

where F,(£,n, 7) is a polynomial of degree 2m in &, n and 7 given by

o7
F.(&n,7)=4 Zﬁ—§7|pm<§ n,7)|°

with p,,(£,n, 7) polynomials given by
(€, m,7) = exp { —5i(k€ — 3k*n + k1) } —=

7 XD {3i(kE — ik + k°7)}

fo=i
Hence

Fi(&nm)=(€-3r+1)+n" +1

Ey(&n,m) = (6 =31+ 1) +2(0* + 127 +6)€2 — 4(37 + 1)(n* + 127 — 5)¢
+ '+ 6(31 — 2)717 + 21677 + 5472 — 127 + 23
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Rational Solutions of KPI Vo(&,m, 7)
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‘/2(5 o 37—7 7, 7_)

4 4

T=1.5
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lim max[V5(0,Y, 7)]
—0o0 YER




The rational solutions of KPI
(Ve + 6V Ve + Vege)e — 3V = 0 (1)

obtained by Ablowitz, Chakravarty, Trubatch & Villaroel [2000] are
derived in terms of the eigenfunctions of the non-stationary Schrodinger
equation

iy + e +Vip =0 (2)
with potential V' = V' (&, 7, 7), which is used in the solution of KPI by inverse
scattering. KPI (1) is obtained from the compatibility of (2) and

©r +4peee + 6V e + Wep =0, We=V (3)

These rational solutions of KPI are deeply connected with an integer called
the “charge” or “index”, and this number is related to the degree of the poly-
nomial that generates the rational solution.

Conjecture

Suppose that V,,(&{,n,7) is a rational solution of the KPI equation (1) de-
rived in terms of the eigenfunctions of the non-stationary Schrodinger equa-

tion (2), then
1 oo oo
[ [ viennacan—m
8T —00 J —00
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Numerical Results

mo oo | viennasan o [ [ vienndca
1 1 2
2 2 4.15423119
3 3 6.87299527
4 4 9.88225790
5! 5 13.07265607
§ 6 16.38558786
Conjecture

Suppose that V,,(&,n, 7) is a rational solution of the KPI equation derived
in terms of the eigenfunctions of the non-stationary Schrodinger equation,

then . o
—/ / V20, 7)A€ dy = m
8T J o0 J -0
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Conclusions

e There are algebraically decaying rational solutions of the focusing NLS
equation, the Boussinesq equation and the Kadomtsev-Petviashvili
I equation which appear to have applications in rogue or freak waves.

e The rational solutions of KPI have been derived using several methods:

e from the NLS equation;
e from the Boussinesq equation; and
e from eigenfunctions of the associated spectral problem.
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Conclusions

e There are algebraically decaying rational solutions of the focusing NLS
equation, the Boussinesq equation and the Kadomtsev-Petviashvili
I equation which appear to have applications in rogue or freak waves.

e The rational solutions of KPI have been derived using several methods:

e from the NLS equation;
e from the Boussinesq equation; and
e from eigenfunctions of the associated spectral problem.

Open Problems

e Can the polynomials associated with the rational solutions of the Bouss-
inesq equation be expressed as determinants, or Wronskians?

e Are these rational solutions of the Boussinesq and KPI equations stable?

e Can the hierarchy of rational solutions of the Boussinesq equation be de-
rived from its Lax pairs?

e Do these special polynomials associated with rational solutions of soliton
equations have further applications, e.g. in numerical analysis?
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