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Rogue Waves

Rogue waves (or freak waves) are isolated structures with unusually high
amplitude, such as the wave in the 1834 woodcut “Fuji seen from the sea” by
Katsushika Hokusai.



Wave height measurement as a function of time showing the rogue wave
observed on 1st January 1995 at the Draupner oil rig in the North Sea off
the coast of Norway





In recent years “rogue waves” have been observed in other contexts beyond
the ocean

• Optical fibres (Solli et al. [2007], Kilber et al. [2010]).
I “How freak or rogue waves form in the ocean is not well understood, but

new investigations suggest a mechanism for these waves that may also
allow formation of high-intensity pulses in optical fibers”

• Atmospheric waves (Stenflo & Marklund [2010])
• Bose-Einstein condensates (Bludov, Konotop & Akhmediev [2009])
• Waves in superfluids (Ganshin et al. [2008])
• Plasma Physics (Bailung, Sharma & Nakamura [2011])
• Finance (Ivancevic [2009], Yan [2011]).
I The Ivancevic option pricing model

i
∂ψ

∂t
+ 1

2σ
∂2ψ

∂S2 + β|ψ|2ψ = 0

where ψ(S, t) the option price, S is the asset price, σ the volatility and
β depends on the interest rate.



Time-wavelength profile of an optical rogue wave
obtained from a short-time Fourier transform

(Solli, Ropers, Koonath & Jalali, Nature [2007])
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Nonlinear Schrödinger Equation
iψt + ψxx + 1

2σ|ψ|
2ψ = 0, σ = ±1

• A soliton equation solvable by inverse scattering (Zakharov & Shabat
[1972]); σ = 1 is “focusing” and σ = −1 is “de-focusing”.
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Nonlinear Schrödinger Equation
iψt + ψxx + 1

2σ|ψ|
2ψ = 0, σ = ±1

• A soliton equation solvable by inverse scattering (Zakharov & Shabat
[1972]); σ = 1 is “focusing” and σ = −1 is “de-focusing”.
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• Arises in numerous physical applications including:
I water waves (Benney & Roukes [1969]; Zakharov [1968]);
I optical fibres (Hasegawa & Tappert [1973]);
I plasmas (Zakharov [1972]);
I ocean waves (Peregrine [1983]);
I magnetostatic spin waves (Kalinikos et al. [1997]; Xia et al. [1997]).



Rational Solutions of the focusing NLS Equation
(Akhmediev, Ankiewicz & Soto-Crespo [2009])

(Akhmediev, Ankiewicz & PAC [2010])
Rational solutions of the focusing NLS equation

iψt + ψxx + 1
2|ψ|

2ψ = 0

have the form

ψn(x, t) =

{
1− 4

Gn(x, t) + itHn(x, t)

Fn(x, t)

}
exp
(
1
2it
)

where Fn(x, t), Gn(x, t) and Hn(x, t) are polynomials in x and t with real coef-
ficients, and Fn(x, t) has no real zeros. The polynomials Fn(x, t), Gn(x, t) and
Hn(x, t) satisfy the Hirota equations

4(tDt + 1)Hn •Fn + D2
xFn •Fn − 4D2

xFn •Gn = 0

DtGn •Fn + tD2
xHn •Fn = 0

D2
xFn •Fn = 8G2

n + 8t2H2
n − 4FnGn

with Dx and Dt the Hirota operators

DxF •G =

(
d

dx1
− d

dx2

)
F (x1)F (x2)

∣∣∣∣
x1=x2=x
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2it
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1
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1
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Remark
The solution ψ1(x, t) is the Peregrine solution (Peregrine [1983]).



|ψ1(x, t)| |ψ2(x, t)|



|ψ3(x, t)|



Generalized Rational Solutions
of the focusing NLS Equation

Dubard, Gaillard, Klein & Matveev [2010] show that the focusing NLS
equation

iψt + ψxx + 1
2|ψ|

2ψ = 0

has generalized rational solutions in the form

ψ̂2(x, t;α, β) =

{
1− 4

Ĝ2(x, t;α, β) + iĤ2(x, t;α, β)

F̂2(x, t;α, β)

}
exp
(
1
2it
)

where

Ĝ2(x, t;α, β) = x4 + 6(t2 + 1)x2 + 5t4 + 18t2 − 3 − 2αt + 2βx

Ĥ2(x, t;α, β) = t{x4 + 2(t2 − 3)x2 + (t2 + 5)(t2 − 3)} + α(x2 − t2 + 1) + 2βtx

F̂2(x, t;α, β) = x6 + 3(t2 + 1)x4 + 3(t2 − 3)2x2 + t6 + 27t4 + 99t2 + 9

+ 2αt(3x2 − t2 − 9) + α2− 2βx(x2 − 3t2 − 3) + β2

with α and β arbitrary constants — see also Dubard & Matveev [2011,
2013]; Kedziora, Akhmediev & Ankiewicz [2011, 2012, 2013].
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with α and β arbitrary constants — see also Dubard & Matveev [2011,
2013]; Kedziora, Akhmediev & Ankiewicz [2011, 2012].
• These solutions have now been expressed in terms of Wronskians, see

Gaillard [2011, 2012, 2013, 2014, 2015, 2016]; Guo, Ling & Liu [2012];
Ohta & Yang [2012], ... .



α = β = 0 α = β = 5 α = β = 10

α = β = 20 α = β = 50 α = β = 100
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Boussinesq Equation

utt + uxx − (u2)xx − 1
3uxxxx = 0

• A soliton equation solvable by inverse scattering (Ablowitz & Haber-
man [1975], Zakharov [1974]).

u(x, t) = 2κ2 sech2{κ(x− ct)}, c = ±
√

4
3κ

2 − 1



Boussinesq Equation

utt + uxx − (u2)xx − 1
3uxxxx = 0

• A soliton equation solvable by inverse scattering (Ablowitz & Haber-
man [1975], Zakharov [1974]).

u(x, t) = 2κ2 sech2{κ(x− ct)}, c = ±
√

4
3κ

2 − 1

• Arises in several physical applications:
I propagation of long waves in shallow water (Boussinesq [1871],

Whitham [1974]);
I one-dimensional nonlinear lattice-waves (Toda [1975]);
I the description of vibrations in a nonlinear string (Zakharov [1974]);
I ion sound waves in a plasma (Scott [1975]).



Rational Solutions of the Boussinesq Equation

utt + uxx − (u2)xx − 1
3uxxxx = 0 (1)

• The Boussinesq equation (1) has symmetry reductions which are solvable
in terms of PII and PIV. Hence rational solutions can be obtained in terms
Yablonskii–Vorob’ev polynomials, which describe rational solutions of
PII, and in terms of generalised Hermite polynomials and the gener-
alised Okamoto polynomials, which describe rational solutions of PIV.
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tion (1), which involve polynomials that are analogues of the Burchnall-
Chaundy/Adler-Moser polynomials that arise in the description of ra-
tional solutions of the Korteweg-de Vries equation (PAC [2008]).
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• The Boussinesq equation (1) has symmetry reductions which are solvable
in terms of PII and PIV. Hence rational solutions can be obtained in terms
Yablonskii–Vorob’ev polynomials, which describe rational solutions of
PII, and in terms of generalised Hermite polynomials and the gener-
alised Okamoto polynomials, which describe rational solutions of PIV.
• There are also generalised rational solutions of the Boussinesq equa-

tion (1), which involve polynomials that are analogues of the Burchnall-
Chaundy/Adler-Moser polynomials that arise in the description of ra-
tional solutions of the Korteweg-de Vries equation (PAC [2008]).

ut + 6uux + uxxx = 0

•However there are other rational solutions of the Boussinesq equation.
Ablowitz & Satsuma [1978] obtained the rational solution

u(x, t) =
4(1− x2 + t2)

(1 + x2 + t2)2
= 2

∂2

∂x2
ln(1 + x2 + t2)

by taking a long-wave limit of the two-soliton solution.



Rational Solutions of the Boussinesq Equation

utt + uxx − (u2)xx − 1
3uxxxx = 0 (1)

Making the transformation

u(x, t) = 2
∂2

∂x2
ln f (x, t)

yields the bilinear form (
D2
t + D2

x − 1
3D

4
x

)
f •f = 0 (2)

with Dx and Dt the Hirota operators. This has solutions fn(x, t) that are
polynomials of degree n(n+ 1) in both x and t, with fn(x, t) > 0 for all x, t ∈ R

f1(x, t) = x2 + t2 + 1

f2(x, t) = x6 +
(
3t2 + 25

3

)
x4 +

(
3t4 + 30t2 − 125

9

)
x2 + t6 + 17

3 t
4 + 475

9 t
2 + 625

9

f3(x, t) = x12 +
(
6t2 + 98

3

)
x10 +

(
15t4 + 230t2 + 245

3

)
x8

+
(
20t6 + 1540

3 t4 + 18620
9 t2 + 75460

81

)
x6

+
(
15t8 + 1460

3 t6 + 37450
9 t4 + 24500

3 t2 − 5187875
243

)
x4

+
(
6t10 + 190t8 + 35420

9 t6 − 4900
9 t4 + 188650

27 t2 + 159786550
729

)
x2

+ t12 + 58
3 t

10 + 1445
3 t8 + 798980

81 t6 + 16391725
243 t4 + 300896750

729 t2 + 878826025
6561

These polynomials appear in Pelinovsky & Stepnyants [1992]



u1(x, t) u2(x, t) u3(x, t)

u4(x, t) u5(x, t) u6(x, t)



F3(x, t) F4(x, t) F5(x, t)

Loci of the complex roots of the polynomials Fn(x, t), for 3, 4, 5, for t = 0 (red)
and t = 3n (blue), i.e. t = 9 for F3(x, t), t = 12 for F4(x, t) and t = 15 for F5(x, t).



F3(x, t) F4(x, t) F5(x, t)



t = 0 t = 1 t = 2.5

t = 5 t = 8 t = 15



Nonlinear Schrödinger equation
F1(x, t) = x2 + t2 + 1

F2(x, t) =
(
x2 + t2

)3
+ x4 − 9(2t2 − 3)x2 + 27t4 + 99t2 + 9

F3(x, t) =
(
x2 + t2

)6
+ 6x10 − 45(2t2 − 3)x8 − 180(t4 − 3t2 − 13)x6

+ 15(4t6 − 90t4 + 900t2 + 225)x4

+ 6(45t8 + 2250t6 + 13050t4 − 6075t2 + 2025)x2

+ 126t10 + 3735t8 + 15300t6 + 143775t4 + 93150t2 + 2025

Boussinesq equation
f1(x, t) = x2 + t2 + 1

f2(x, t) =
(
x2 + t2

)3
+ 25

3 x
4 +
(
30t2 − 125

9

)
x2 + 17

3 t
4 + 475

9 t
2 + 625

9

f3(x, t) =
(
x2 + t2

)6
+ 98

3 x
10 +

(
230t2 + 245

3

)
x8 +

(
1540
3 t4 + 18620

9 t2 + 75460
81

)
x6

+
(
1460
3 t6 + 37450

9 t4 + 24500
3 t2 − 5187875

243

)
x4

+
(
190t8 + 35420

9 t6 − 4900
9 t4 + 188650

27 t2 + 159786550
729

)
x2

+ 58
3 t

10 + 1445
3 t8 + 798980

81 t6 + 16391725
243 t4 + 300896750

729 t2 + 878826025
6561



Generalised Rational Solution of the Boussinesq Equation
The Boussinesq equation

utt + uxx − (u2)xx − 1
3uxxxx = 0

also has the generalised rational solution

ũ2(x, t;α, β) = 2
∂2

∂x2
ln f̃2(x, t;α, β)

with

f̃2(x, t;α, β) =
(
x2 + t2

)3
+ 25

3 x
4 +
(
30t2 − 125

9

)
x2 + 17

3 t
4 + 475

9 t
2 + 625

9

+ 2αt
(
3x2 − t2 + 5

3

)
+ 2βx

(
x2 − 3t2 − 1

3

)
+ α2 + β2

= f2(x, t) + 2αt
(
3x2 − t2 + 5

3

)
+ 2βx

(
x2 − 3t2 − 1

3

)
+ α2 + β2

with α and β arbitrary constants.



ũ2(x, t;α, β)

α = β = 0 α = β = 5 α = β = 10

α = β = 20 α = β = 50 α = β = 100



ũ2(x, t;α, β)

α = β = 100 α = 100, β = 0 α = 0, β = 100

α = 100, β = −100 α = 100, β = 10 α = 10, β = 100



The next generalised rational solution is

ũ3(x, t;α, β) = 2
∂2

∂x2
ln f̃3(x, t;α, β)

with
f̃3(x, t;α, β) = f3(x, t) + 2αtp2(x, t) + 2βxq2(x, t) + (α2 + β2)f1(x, t)

=
(
x2 + t2

)6
+ 98

3 x
10 +

(
230t2 + 245

3

)
x8

+
(
1540
3 t4 + 18620

9 t2 + 75460
81

)
x6

+
(
1460
3 t6 + 37450

9 t4 + 24500
3 t2 − 5187875

243

)
x4

+
(
190t8 + 35420

9 t6 − 4900
9 t4 + 188650

27 t2 + 159786550
729

)
x2

+ 58
3 t

10 + 1445
3 t8 + 798980

81 t6 + 16391725
243 t4 + 300896750

729 t2 + 878826025
6561

+ 2αt
{
t6 − (9x2 + 7)t4 − (5x4 + 190x2 + 245)t2

+ 5x6 + 105x4 − 665x2 + 18865
3

}
+ 2βx

{
x6 − (9t2 − 13)x4 − (5t4 + 230t2 + 245)x2

+ 5t6 + 45t4 + 535t2 + 12005
3

}
+ (α2 + β2)(x2 + t2 + 1)

with α and β arbitrary constants.



ũ3(x, t;α, β)

α = β = 0 α = β = 100 α = β = 500

α = β = 1000 α = β = 5000 α = β = 10000



ũ3(x, t;α, β)

α = β = 104 α = 104, β = 0 α = 0, β = 104

α = 104, β = −104 α = 104, β = 102 α = 102, β = 104



ũ4(x, t;α, β)

α = β = 0 α = β = 103 α = β = 105

α = β = 106 α = β = 107 α = β = 108



ũ2(x, t; 0, 104) ũ3(x, t; 0, 107)



Theorem (PAC & Dowie [2017])
The generalised rational solutions of the Boussinesq equation

utt + uxx − (u2)xx − 1
3uxxxx = 0

have the form

ũn+1(x, t;α, β) = 2
∂2

∂x2
ln f̃n+1(x, t;α, β), n ≥ 1

with

f̃n+1(x, t;α, β) = fn+1(x, t) + 2αtpn(x, t) + 2βxqn(x, t) + (α2 + β2)fn−1(x, t)

where fn(x, t), pn(x, t), qn(x, t) are polynomials of degree n(n + 1) in x and t.
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utt + uxx − (u2)xx − 1
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∂2

∂x2
ln f̃n+1(x, t;α, β), n ≥ 1

with

f̃n+1(x, t;α, β) = fn+1(x, t) + 2αtpn(x, t) + 2βxqn(x, t) + (α2 + β2)fn−1(x, t)

where fn(x, t), pn(x, t), qn(x, t) are polynomials of degree n(n + 1) in x and t.

Theorem (PAC & Dowie [2017])
The functions

Θ±n (x, t) = tpn(x, t)± ixqn(x, t), n ≥ 1

are also solutions of the bilinear equation(
D2
t + D2

x − 1
3D

4
x

)
f •f = 0

i.e. the same bilinear equation as satisfied by fn(x, t) and f̃n(x, t;α, β).



Nonlinear Superposition of Solutions
Corollary (PAC & Dowie [2017])

The generalised rational solutions of the Boussinesq equation

utt + uxx − (u2)xx − 1
3uxxxx = 0

have the form

ũn+1(x, t;α, β) = 2
∂2

∂x2
ln f̃n+1(x, t;α, β), n ≥ 1

with

f̃n+1(x, t;α, β) = fn+1(x, t) + (α+ iβ)Θ+
n (x, t) + (α− iβ)Θ−n (x, t) + (α2 +β2)fn−1(x, t)

where f̃n+1(x, t;α, β), fn+1(x, t), Θ+
n (x, t), Θ−n (x, t) and fn−1(x, t) are all indepen-

dent solutions of the bilinear equation(
D2
t + D2

x − 1
3D

4
x

)
f •f = 0



Theorem (Ankiewicz, Bassom, PAC & Dowie [2017])
Suppose that un(x, t) is a rogue wave solution of the Boussinesq equation

utt + uxx − (u2)xx − 1
3uxxxx = 0

then
1

8π

∫ ∞
−∞

∫ ∞
−∞

u 2
n(x, t) dx dt = 1

2n(n + 1)

and
1

8π

∫ ∞
−∞

∫ ∞
−∞

u3n(x, t) dx dt = n(n + 1)



Theorem (Ankiewicz, Bassom, PAC & Dowie [2017])
Suppose that un(x, t) is a rogue wave solution of the Boussinesq equation

utt + uxx − (u2)xx − 1
3uxxxx = 0

then
1

8π

∫ ∞
−∞

∫ ∞
−∞

u2n(x, t) dx dt = 1
2n(n + 1)

and
1

8π

∫ ∞
−∞

∫ ∞
−∞

u3n(x, t) dx dt = n(n + 1)

Conjecture (Ankiewicz & Akhmediev [2015])
Suppose that ψn(x, t) is a rogue wave solution of the NLS equation

iψt + ψxx + 1
2|ψ|

2ψ = 0

then
1

8π

∫ ∞
−∞

∫ ∞
−∞

[
|ψ2

n(x, t)| − 1
]2

dx dt = 1
2n(n + 1)

un(x, t) = 2
∂2

∂x2
ln fbqn (x, t), |ψ2

n(x, t)| − 1 = 2
∂2

∂x2
lnF nls

n (x, t)



Conservation Laws
Definition. A conservation law is an equation of the form

∂T

∂t
+
∂X

∂x
= 0

where T (x, t) is the conserved density and X(x, t) the associated flux. The
integral ∫ ∞

−∞
T (x, t) dx = c

with c a constant, is called a constant of motion, with t interpreted as a
timelike variable. It follows that∫ ∞

−∞
X(x, t) dt = k

with k also a constant.

To study conservation laws for the Boussinesq equation, we consider the
system

ut + vx = 0

vt + (u2)x − ux + 1
3uxxx = 0



The first few conserved densities Tj(x, t) and associated fluxes Xj(x, t) for
the system are

T1(x, t) = u, X1(x, t) = v

T2(x, t) = v, X2(x, t) = u2 − u + 1
3uxx

T3(x, t) = uv, X3(x, t) = 2
3u

3 + 1
2v

2 − 1
2u

2 − 1
6u

2
x + 1

3uuxx

T4(x, t) = 2
3u

3 + v2 − u2 − 1
3u

2
x, X4(x, t) = 2u2v − 2uv + 2

3vuxx −
2
3uxvx

Hence the first few constants of the motion are∫ ∞
−∞

u(x, t) dx = c1,

∫ ∞
−∞

u(x, t)v(x, t) dx = c3∫ ∞
−∞

v(x, t) dx = c2,

∫ ∞
−∞

(
2
3u

3 + v2 − u2 − 1
3u

2
x

)
dx = c4

with c1, c2, c3 and c4 constants, and the associated fluxes are∫ ∞
−∞

v(x, t) dt = k1,

∫ ∞
−∞

(
2
3u

3 + 1
2v

2 − 1
2u

2 − 1
6u

2
x + 1

3uuxx
)

dt = k3∫ ∞
−∞

(
u2 − u + 1

3uxx
)

dt = k2,

∫ ∞
−∞

(
2u2v − 2uv + 2

3vuxx −
2
3uxvx

)
dt = k4

with k1, k2, k3 and k4 constants. For the algebraically decaying rational solu-
tions of the Boussinesq equation then cj = 0 and kj = 0, for j = 1, . . . , 4.



Rational Solutions of the
Kadomstev-Petviashvili I Equation

(Vτ + 6V Vξ + Vξξξ)ξ − 3Vηη = 0



Kadomstev-Petviashvili Equation

(Vτ + 6V Vξ + Vξξξ)ξ + 3σ2Vηη = 0, σ2 = ±1

• The first 2 + 1-dimensional equation found to be solvable by inverse scat-
tering (Dryuma [1974], Zakharov & Shabat [1974]).



Kadomstev-Petviashvili Equation

(Vτ + 6V Vξ + Vξξξ)ξ + 3σ2Vηη = 0, σ2 = ±1

• The first 2 + 1-dimensional equation found to be solvable by inverse scat-
tering (Dryuma [1974], Zakharov & Shabat [1974]).

• The case σ = i is known as the KPI equation and the case σ = 1 is known
as the KPII equation. Inverse scattering is different for the two cases:
I Riemann-Hilbert method for KPI (Manakov [1981], Segur [1982],

Fokas & Ablowitz [1983]),
I ∂̄ method for KPII (Ablowitz, Bar Yaacov & Fokas [1983]).



Kadomstev-Petviashvili Equation

(Vτ + 6V Vξ + Vξξξ)ξ + 3σ2Vηη = 0, σ2 = ±1

• The first 2 + 1-dimensional equation found to be solvable by inverse scat-
tering (Dryuma [1974], Zakharov & Shabat [1974]).

• The case σ = i is known as the KPI equation and the case σ = 1 is known
as the KPII equation. Inverse scattering is different for the two cases:
I Riemann-Hilbert method for KPI (Manakov [1981], Segur [1982],

Fokas & Ablowitz [1983]),
I ∂̄ method for KPII (Ablowitz, Bar Yaacov & Fokas [1983]).

• Arises in several physical applications:
I Derived by Kadomtsev & Petviashvili [1970] to model ion-acoustic

waves of small amplitude propagating in plasmas.
I Surface water waves (Ablowitz & Segur [1979]).
I Two-dimensional shallow water waves (Segur & Finkel [1985], Ham-

mack et al. [1989]).



It is well-known that KPI

(Vτ + 6V Vξ + Vξξξ)ξ − 3Vηη = 0

has the 1-lump solution (Manakov et al. [1977])

V (ξ, η, τ ) = 2
∂2

∂ξ2
ln{(ξ − 3τ )2 + η2 + 1} = −4

(ξ − 3τ )2 − η2 − 1

{(ξ − 3τ )2 + η2 + 1}2



The focusing NLS equation

iψt + ψxx + 1
2|ψ|

2ψ = 0 (1)

has the rational solutions in the form

ψ(x, t;α, β) =

{
1− 4

G(x, t;α, β) + iH(x, t;α, β)

F (x, t;α, β)

}
exp
(
1
2it
)

therefore

|ψ(x, t;α, β)|2 − 1 =
16G2(x, t;α, β) + 16H2(x, t;α, β)− 8F (x, t;α, β)G(x, t;α, β)

F 2(x, t;α, β)

= 4
∂2

∂x2
lnF (x, t;α, β)

Dubard & Matveev [2011, 2013] (see also Gaillard [2016]) show that

V (ξ, η, τ ) = 2
∂2

∂ξ2
lnF (ξ − 3τ, η;α,−48τ )

= 1
2

(
|ψ(x, t;α, β)|2 − 1

) ∣∣∣
x=ξ−3τ,t=η,β=−48τ

is a solution of the KPI equation

(Vτ + 6V Vξ + Vξξξ)ξ − 3Vηη = 0 (2)

This relates solutions of the focusing NLS equation (1) and KPI (2).



Let x = ξ − 3τ , t = η and β = −48τ in

F nls
2 (x, t;α, β) = x6 + 3(t2 + 1)x4 + 3(t2 − 3)2x2 + t6 + 27t4 + 99t2 + 9

+ 2αt(3x2 − t2 − 9) + α2 − 2βx(x2 − 3t2 − 3) + β2

then
F2(ξ, η, τ ;α) = F nls

2 (ξ − 3τ, η;α,−48τ )

satisfies (
D4
ξ + DξDτ − 3D2

η

)
F2 •F2 = 0

which is the bilinear form of the KPI equation

(Vτ + 6V Vξ + Vξξξ)ξ − 3Vηη = 0 (2)

Therefore
V (ξ, η, τ ;α) = 2

∂2

∂ξ2
lnF2(ξ, η, τ ;α)

is a rational solution of the KPI equation (2).

Further ∫ ∞
−∞

V (ξ, η, τ ) dξ = 0

and
V (ξ, η, τ )→ 0, as ξ2 + η2 →∞



Rational Solutions of KPI

τ = 0 τ = 0.05 τ = 0.1

τ = 0.2 τ = 0.4 τ = 0.7



Reductions of KPI to the Boussinesq equation
If in KPI

(Vτ + 6V Vξ + Vξξξ)ξ − 3Vηη = 0

we make the reduction

V (ξ, η, τ ) = u(x, t), x = ξ − 3τ, t = η

then we obtain the Boussinesq equation

utt + uxx − (u2)xx − 1
3uxxxx = 0

Hence, if

u(x, t) = 2
∂2

∂x2
ln fbq(x, t)

is a solution of the Boussinesq equation, then

V (ξ, η, τ ) = 2
∂2

∂ξ2
ln fbq(ξ − 3τ, η)

is a solution of KPI.



Reductions of KPI to the Boussinesq equation
If in KPI

(Vτ + 6V Vξ + Vξξξ)ξ − 3Vηη = 0

we make the reduction

V (ξ, η, τ ) = u(x, t), x = ξ − 3τ, t = η

then we obtain the Boussinesq equation

utt + uxx − (u2)xx − 1
3uxxxx = 0

Hence, if

u(x, t) = 2
∂2

∂x2
ln fbq(x, t)

is a solution of the Boussinesq equation, then

V (ξ, η, τ ) = 2
∂2

∂ξ2
ln fbq(ξ − 3τ, η)

is a solution of KPI.
• If fbq1 (x, t) = x2 + t2 + 1 then we obtain the 1-lump solution of KPI

V (ξ, η, τ ) = 2
∂2

∂ξ2
ln{(ξ − 3τ )2 + η2 + 1} = −4

(ξ − 3τ )2 − η2 − 1

{(ξ − 3τ )2 + η2 + 1}2



Using the second rational solution of the Boussinesq equation we obtain the
KPI rational solution

V (ξ, η, τ ;α, β) = 2
∂2

∂ξ2
ln fbq2 (ξ, η, τ ;α, β)

where

fbq2 (ξ, η, τ ;α, β) = ξ6 − 18τξ5 + 3
(
45τ 2 + η2 + 25

9

)
ξ4 − 12

(
45τ 2 + 3η2 + 25

3

)
τξ3

+
{

3η4 + 18
(
9τ 2 + 5

3

)
η2 + 1215τ 4 + 450τ 2 − 125

9

}
ξ2

−
{

18τη4 + 36
(
9τ 2 + 5

)
τη2 + 1458τ 5 + 900τ 3 + 250

3 τ
}
ξ

+ η6 + 27
(
τ 2 + 17

81

)
η4 + 9

(
27τ 4 + 30τ 2 + 475

81

)
η2

+ 729τ 6 + 675τ 4 − 125τ 2 + 625
9

+ 2α
{

3ξ2η − 18ξτη − η3 +
(
27τ 2 + 5

3

)
η
}

+ 2β
{
ξ3 − 9ξ2τ −

(
3η2 − 27τ 2 + 1

3

)
ξ − 27τ 3 + 9τη2 + τ

}
+ α2 + β2



Compare F nls
2 (ξ, η, τ ;α) and fbq2 (ξ, η, τ ;α, β)

F nls
2 (ξ, η, τ ;α) = ξ6 − 18τξ5 + 3

(
45τ 2 + η2 + 1

)
ξ4 − 12

(
45τ 2 + 3η2− 5

)
τξ3

+
{

3η4 + 18
(
9τ 2− 1

)
η2 + 1215τ 4− 702τ 2 + 27

}
ξ2

−
{

18τη4 + 36
(
9τ 2 + 5

)
τη2 + 1458τ 5− 2268τ 3 + 450τ

}
ξ

+ η6 + 27
(
τ 2 + 1

)
η4 + 9

(
27τ 4 + 78τ 2 + 11

)
η2

+ 729τ 6− 2349τ 4 + 3411τ 2 + 9

+ 2α
{

3ξ2η − 18ξτη − η3 + 9
(
3τ 2− 1

)
η
}

+ α2

fbq2 (ξ, η, τ ;α, β) = ξ6 − 18τξ5 + 3
(
45τ 2 + η2 + 25

9

)
ξ4 − 12

(
45τ 2 + 3η2 + 25

3

)
τξ3

+
{

3η4 + 18
(
9τ 2+ 5

3

)
η2 + 1215τ 4 + 450τ 2 − 125

9

}
ξ2

−
{

18τη4 + 36
(
9τ 2 + 5

)
τη2 + 1458τ 5+ 900τ 3 + 250

3 τ
}
ξ

+ η6 + 27
(
τ 2 + 17

81

)
η4 + 9

(
27τ 4 + 30τ 2 + 475

81

)
η2

+ 729τ 6+ 675τ 4 − 125τ 2 + 625
9

+ 2α
{

3ξ2η − 18ξτη − η3 + 9
(
3τ 2+ 5

9

)
η
}

+ 2β
{
ξ3 − 9ξ2τ −

(
3η2 − 27τ 2 + 1

3

)
ξ − 27τ 3 + 9τη2 + τ

}
+ α2 + β2



Now consider the general expression, with parameters µ, α and β

F gen
2 (ξ, η, τ ;µ, α, β) = ξ6 − 18τξ5 + (3η2 + 135τ 2 − 6µ2 + 9)ξ4

−
{

36τη2 + 540τ 3 − 12(6µ2 + 6µ− 7)τ
}
ξ3

+
{

3η4 + 18(9τ 2 − 2µ + 1)η2 + 1215τ 4

−54(6µ2 + 12µ− 5)τ 2 + 9µ(µ + 2)(µ2 − 2µ + 2)
}
ξ2

−
{

18τη4 + 36(9τ 2 + 5)τη2 + 1458τ 5 − 324(2µ2 + 6µ− 1)τ 3

+18µ(3µ3 + 12µ2 − 2µ + 12)τ
}
ξ

+ η6 + (27τ 2 + 6µ2 + 12µ + 9)η4

+
{

243τ 4 + 54(6µ + 7)τ 2 + 9(µ4 + 4µ3 + 6µ2 − 4µ + 4)
}
η2

+ 729τ 6 − 81(µ2 + 24µ− 1)τ 4

+ 9(9µ4 + 72µ3 + 150µ2 + 132µ + 16)τ 2 + 9(µ2 − 2µ + 2)2

+ 2α
{

3ηξ2 − 18τηξ − η3 + 3
[
9τ 2 − µ(µ + 2)

]
η
}

+ 2β
{
ξ3 − 9τξ2 − 6(η2 − 9τ 2 + µ2)ξ + 9τη2 − 27τ 3

+ 3(3µ2 + 12µ + 4)τ
}

+ α2 + β2

which has both F nls
2 (ξ, η, τ ;α) and fbq2 (ξ, η, τ ;α, β) as special cases:

F nls
2 (ξ, η, τ ;α) = F gen

2 (ξ, η, τ ; 1, α, 0)

fbq2 (ξ, η, τ ;α, β) = F gen
2 (ξ, η, τ ;−1

3, α, β)



v2(ξ, η, 0;µ, 0, 0)

µ = −1 µ = −2/3 µ = −1/3

µ = 0 µ = 0.5115960325 µ = 3/4



µ = 1 µ = 1
2(1 +

√
5) µ = 2

µ = 2.5 µ = 3 µ = 4



For µ < µ∗, the solution v2(ξ, η, 0;µ, 0, 0) has two peaks on the line η = 0,
which coalesce when µ = µ∗ to form one peak at ξ = η = 0. By considering
when

∂2

∂ξ2
V (ξ, 0, 0;µ, 0, 0)

∣∣∣∣
ξ=0

= −8(3µ4 + 12µ3 + 16µ2 − 6)

(µ2 − 2µ + 2)2
= 0

then µ∗ is the real positive root of
3µ4 + 12µ3 + 16µ2 − 6

= 3
[
µ2 + 2(1− 1

3

√
6)µ + 2−

√
6
] [
µ2 + 2(1 + 1

3

√
6)µ + 2 +

√
6
]

= 0

i.e.
µ∗ = −1 + 1

3

√
6 + 1

3

√
−3 + 3

√
6 ≈ 0.5115960325

For µ > µ∗, it can be shown that

V (0, 0, 0;µ, 0, 0) =
4µ(µ + 2)

µ2 − 2µ + 2

increases until it reaches a maximum height of 4(2 +
√

5) when µ = 1
2(1 +

√
5),

which is the golden mean!



Ablowitz, Chakravarty, Trubatch & Villaroel [2000] show that KPI

(Vτ + 6V Vξ + Vξξξ)ξ − 3Vηη = 0

has rational solutions in the form

Vm(ξ, η, τ ) = 2
∂2

∂ξ2
lnFm(ξ, η, τ )

where Fm(ξ, η, τ ) is a polynomial of degree 2m in ξ, η and τ given by

Fm(ξ, η, τ ) = 4n
2n∑
j=0

∂j

∂ξj
|pm(ξ, η, τ )|2

with pm(ξ, η, τ ) polynomials given by

pm(ξ, η, τ ) = exp
{
−1

2i(kξ −
1
2k

2η + k3τ )
} dm

dkm
exp
{
1
2i(kξ −

1
2k

2η + k3τ )
}∣∣∣∣

k=i

Hence
F1(ξ, η, τ ) = (ξ − 3τ + 1)2 + η2 + 1

F2(ξ, η, τ ) = (ξ − 3τ + 1)4 + 2(η2 + 12τ + 6)ξ2 − 4(3τ + 1)(η2 + 12τ − 5)ξ

+ η4 + 6(3τ − 2)τη2 + 216τ 3 + 54τ 2 − 12τ + 23



Rational Solutions of KPI V2(ξ, η, τ )

τ = −1.5 τ = 1 τ = −0.5 τ = 0

τ = 0.25 τ = 0.5 τ = 1 τ = 1.5



V2(ξ − 3τ, η, τ )

τ = −0.5 τ = −0.25 τ = 0

τ = 0.5 τ = 1 τ = 1.5



X = 0 Y = 0

lim
τ→∞

max
Y ∈R

[V2(0, Y, τ )] = 16 = lim
τ→−∞

max
X∈R

[V2(X, 0, τ )]



The rational solutions of KPI

(Vτ + 6V Vξ + Vξξξ)ξ − 3Vηη = 0 (1)

obtained by Ablowitz, Chakravarty, Trubatch & Villaroel [2000] are
derived in terms of the eigenfunctions of the non-stationary Schrödinger
equation

iϕη + ϕξξ + V ϕ = 0 (2)

with potential V = V (ξ, η, τ ), which is used in the solution of KPI by inverse
scattering. KPI (1) is obtained from the compatibility of (2) and

ϕτ + 4ϕξξξ + 6V ϕξ + Wϕ = 0, Wξ = V (3)

These rational solutions of KPI are deeply connected with an integer called
the “charge” or “index”, and this number is related to the degree of the poly-
nomial that generates the rational solution.

Conjecture
Suppose that Vm(ξ, η, τ ) is a rational solution of the KPI equation (1) de-

rived in terms of the eigenfunctions of the non-stationary Schrödinger equa-
tion (2), then

1

8π

∫ ∞
−∞

∫ ∞
−∞

V 2
m(ξ, η, τ ) dξ dη = m



Numerical Results

m
1

8π

∫ ∞
−∞

∫ ∞
−∞

V 2
m(ξ, η, τ ) dξ dη

1

8π

∫ ∞
−∞

∫ ∞
−∞

V 3
m(ξ, η, τ ) dξ dη

1 1 2

2 2 4.15423119

3 3 6.87299527

4 4 9.88225790

5 5 13.07265607

6 6 16.38558786

Conjecture
Suppose that Vm(ξ, η, τ ) is a rational solution of the KPI equation derived

in terms of the eigenfunctions of the non-stationary Schrödinger equation,
then

1

8π

∫ ∞
−∞

∫ ∞
−∞

V 2
m(ξ, η, τ ) dξ dη = m



Conclusions
• There are algebraically decaying rational solutions of the focusing NLS

equation, the Boussinesq equation and the Kadomtsev-Petviashvili
I equation which appear to have applications in rogue or freak waves.

• The rational solutions of KPI have been derived using several methods:
• from the NLS equation;
• from the Boussinesq equation; and
• from eigenfunctions of the associated spectral problem.



Conclusions
• There are algebraically decaying rational solutions of the focusing NLS

equation, the Boussinesq equation and the Kadomtsev-Petviashvili
I equation which appear to have applications in rogue or freak waves.

• The rational solutions of KPI have been derived using several methods:
• from the NLS equation;
• from the Boussinesq equation; and
• from eigenfunctions of the associated spectral problem.

Open Problems
• Can the polynomials associated with the rational solutions of the Bouss-

inesq equation be expressed as determinants, or Wronskians?
• Are these rational solutions of the Boussinesq and KPI equations stable?
• Can the hierarchy of rational solutions of the Boussinesq equation be de-

rived from its Lax pairs?
• Do these special polynomials associated with rational solutions of soliton

equations have further applications, e.g. in numerical analysis?


