Localisation and delocalisation in the parabolic Anderson model

Nadia Sidorova

University College London

joint works (2006-2017) with
Wolfgang König (TU Berlin and WIAS), Hubert Lacoin (IMPA), Peter Mörters (Bath), Stephen Muirhead (Kings), Marcel Ortgiese (Bath), Richard Pymar (Birkbeck), Aleksander Twarowski (London)

Parabolic Anderson model

Parabolic Anderson model

The Parabolic Anderson model is the heat equation on \mathbb{Z}^{d}

$$
\frac{\partial u}{\partial t}=\Delta u+\xi u
$$

with independent identically distributed random potential $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ and localised initial condition $u(0, z)=\mathbf{1}_{0}(z)$.

Parabolic Anderson model

The Parabolic Anderson model is the heat equation on \mathbb{Z}^{d}

$$
\frac{\partial u}{\partial t}=\Delta u+\xi u
$$

with independent identically distributed random potential $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ and localised initial condition $u(0, z)=\mathbf{1}_{0}(z)$.

The discrete Laplacian is defined by

$$
(\Delta f)(z)=\sum_{y \sim z}[f(y)-f(z)]
$$

Parabolic Anderson model

The Parabolic Anderson model is the heat equation on \mathbb{Z}^{d}

$$
\frac{\partial u}{\partial t}=\Delta u+\xi u
$$

with independent identically distributed random potential $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ and localised initial condition $u(0, z)=\mathbf{1}_{0}(z)$.

The discrete Laplacian is defined by

$$
(\Delta f)(z)=\sum_{y \sim z}[f(y)-f(z)]
$$

If $E|\xi(0)|^{d+\varepsilon}<\infty$ the PAM has a unique nonnegative solution.

Parabolic Anderson model

The Parabolic Anderson model is the heat equation on \mathbb{Z}^{d}

$$
\frac{\partial u}{\partial t}=\Delta u+\xi u
$$

with independent identically distributed random potential $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ and localised initial condition $u(0, z)=\mathbf{1}_{0}(z)$.

The discrete Laplacian is defined by

$$
(\Delta f)(z)=\sum_{y \sim z}[f(y)-f(z)]
$$

If $E|\xi(0)|^{d+\varepsilon}<\infty$ the PAM has a unique nonnegative solution.

How does $u(t, \cdot)$ behave as $t \rightarrow \infty$?

Branching CTRW in random environment

Branching CTRW in random environment

- state space \mathbb{Z}^{d}

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}-$ i.i.d.
- start with one particle at the origin

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

$N(t, z)$ is the number of particles at time t at site z.

Branching CTRW in random environment

- state space \mathbb{Z}^{d}
- random environment $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ - i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

$N(t, z)$ is the number of particles at time t at site z.
$u(t, z)=\mathbb{E} N(t, z)$ is the average number of particles at time t at site z, still random.

Two approaches to study $u(t, z)$

- Analytical:
- Probabilistic:
- Analytical: use Spectral Theory to analyse the parabolic Anderson equation

$$
\frac{\partial u}{\partial t}=\Delta u+\xi u
$$

- Probabilistic:
- Analytical: use Spectral Theory to analyse the parabolic Anderson equation

$$
\frac{\partial u}{\partial t}=\Delta u+\xi u
$$

- Probabilistic: use path analysis to analyse the Feynman-Kac Formula

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\left\{X_{t}=z\right\}}\right\}
$$

where $\left(X_{s}\right)$ is a continuous-time random walk starting at zero.

Heat equation

The propagation of temperature $u(t, x)$ at time t at the point $x \in \mathbb{R}$ is described by

$$
\frac{\partial u}{\partial t}=\Delta u .
$$

If the initial temperature is δ_{0} then

$$
u(t, x)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}} .
$$

Heat equation

The propagation of temperature $u(t, x)$ at time t at the point $x \in \mathbb{R}$ is described by

$$
\frac{\partial u}{\partial t}=\Delta u .
$$

If the initial temperature is δ_{0} then

$$
u(t, x)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}
$$

Heat equation

The propagation of temperature $u(t, x)$ at time t at the point $x \in \mathbb{R}$ is described by

$$
\frac{\partial u}{\partial t}=\Delta u .
$$

If the initial temperature is δ_{0} then

Heat equation

The propagation of temperature $u(t, x)$ at time t at the point $x \in \mathbb{R}$ is described by

$$
\frac{\partial u}{\partial t}=\Delta u .
$$

If the initial temperature is δ_{0} then

Heat equation

The propagation of temperature $u(t, x)$ at time t at the point $x \in \mathbb{R}$ is described by

$$
\frac{\partial u}{\partial t}=\Delta u .
$$

If the initial temperature is δ_{0} then

$$
u(t, x)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}
$$

Heat equation with a potential

Consider

$$
\frac{\partial u}{\partial t}=\Delta u+V u
$$

where $V: \mathbb{R} \rightarrow \mathbb{R}$ is a reasonably nice potential.

Heat equation with a potential

Consider

$$
\frac{\partial u}{\partial t}=\Delta u+V u
$$

where $V: \mathbb{R} \rightarrow \mathbb{R}$ is a reasonably nice potential.
Suppose $u(0, \cdot)=\delta_{0}$.

Heat equation with a potential

Consider

$$
\frac{\partial u}{\partial t}=\Delta u+V u
$$

where $V: \mathbb{R} \rightarrow \mathbb{R}$ is a reasonably nice potential.
Suppose $u(0, \cdot)=\delta_{0}$.

Heat equation with a potential

Consider

$$
\frac{\partial u}{\partial t}=\Delta u+V u
$$

where $V: \mathbb{R} \rightarrow \mathbb{R}$ is a reasonably nice potential.
Suppose $u(0, \cdot)=\delta_{0}$.

Heat equation with a potential

Consider

$$
\frac{\partial u}{\partial t}=\Delta u+V u
$$

where $V: \mathbb{R} \rightarrow \mathbb{R}$ is a reasonably nice potential.
Suppose $u(0, \cdot)=\delta_{0}$.

Parabolic Anderson Model

Consider

$$
\frac{\partial u}{\partial t}=\Delta u+\xi u
$$

where $\xi: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is a random i.i.d. potential.

Parabolic Anderson Model

Consider

$$
\frac{\partial u}{\partial t}=\Delta u+\xi u
$$

where $\xi: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is a random i.i.d. potential.

Parabolic Anderson Model

Consider

$$
\frac{\partial u}{\partial t}=\Delta u+\xi u
$$

where $\xi: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is a random i.i.d. potential.

Parabolic Anderson Model

Consider

$$
\frac{\partial u}{\partial t}=\Delta u+\xi u
$$

where $\xi: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is a random i.i.d. potential.

Does the solution of a random heat equation behaves similar to a deterministic one?

Parabolic Anderson Model

Consider

$$
\frac{\partial u}{\partial t}=\Delta u+\xi u
$$

where $\xi: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is a random i.i.d. potential.

Does the solution of a random heat equation behaves similar to a deterministic one?

Parabolic Anderson Model

Consider

$$
\frac{\partial u}{\partial t}=\Delta u+\xi u
$$

where $\xi: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is a random i.i.d. potential.

Does the solution of a random heat equation behaves similar to a deterministic one?

Why not?

Bernoulli potential:

Some unbounded potential:

Intermittency

At large times t the mass of the solution is concentrated on a small number of spatially remote small islands.

Intermittency

At large times t the mass of the solution is concentrated on a small number of spatially remote small islands.

This is an example of the intermittency effect: the solution becomes increasingly random and does not exhibit any averaging.

Intermittency

At large times t the mass of the solution is concentrated on a small number of spatially remote small islands.

This is an example of the intermittency effect: the solution becomes increasingly random and does not exhibit any averaging.

The PAM has been studied since 1990 (Gärtner and Molchanov) by a lot of people. There is a survey by König (155 pages, 10 pages of references).

Intermittency

At large times t the mass of the solution is concentrated on a small number of spatially remote small islands.

This is an example of the intermittency effect: the solution becomes increasingly random and does not exhibit any averaging.

The PAM has been studied since 1990 (Gärtner and Molchanov) by a lot of people. There is a survey by König (155 pages, 10 pages of references).

What can we say about unbounded potentials?

Intermittency

At large times t the mass of the solution is concentrated on a small number of spatially remote small islands.

This is an example of the intermittency effect: the solution becomes increasingly random and does not exhibit any averaging.

The PAM has been studied since 1990 (Gärtner and Molchanov) by a lot of people. There is a survey by König (155 pages, 10 pages of references).

What can we say about unbounded potentials?

- Pareto:

$$
P(\xi(0)>x)=x^{-\alpha}, \alpha>d
$$

- Weibull:

$$
P(\xi(0)>x)=\exp \left\{-x^{\gamma}\right\}, \gamma>0
$$

- Double-exponential: $P(\xi(0)>x)=\exp \left\{-e^{x / \rho}\right\}, \rho>0$
- 'Almost bounded' - quite different, not in this talk

Localisation

Theorem 1

[König, Mörters, S. '06] Pareto
[S., Twarowski '12] Weibull with $\gamma<2$
[Fiodorov, Muirhead '13] Weibull with any γ

There exists a process Z_{t} with values in \mathbb{Z}^{d} such that

$$
\lim _{t \rightarrow \infty} \frac{u\left(t, Z_{t}\right)}{\sum_{z \in \mathbb{Z}^{d}} u(t, z)}=1 \quad \text { in probability. }
$$

Localisation

Theorem 1

[König, Mörters, S. '06] Pareto
[S., Twarowski '12] Weibull with $\gamma<2$ [Fiodorov, Muirhead '13] Weibull with any γ

There exists a process Z_{t} with values in \mathbb{Z}^{d} such that

$$
\lim _{t \rightarrow \infty} \frac{u\left(t, Z_{t}\right)}{\sum_{z \in \mathbb{Z}^{d}} u(t, z)}=1 \quad \text { in probability. }
$$

Localisation

Theorem 1

[König, Mörters, S. '06] Pareto
[S., Twarowski '12] Weibull with $\gamma<2$
[Fiodorov, Muirhead '13] Weibull with any γ

There exists a process Z_{t} with values in \mathbb{Z}^{d} such that

$$
\lim _{t \rightarrow \infty} \frac{u\left(t, Z_{t}\right)}{\sum_{z \in \mathbb{Z}^{d}} u(t, z)}=1 \quad \text { in probability. }
$$

- The mass is concentrated at the maximiser Z_{t} of

$$
\Psi_{t}(z)=\xi(z)-\frac{|z|}{t} \log \xi(z)
$$

in the Pareto case, and of a similarly shaped functional Ψ_{t} in the Weibull case.

Localisation

Theorem 1

[König, Mörters, S. '06] Pareto
[S., Twarowski '12] Weibull with $\gamma<2$
[Fiodorov, Muirhead '13] Weibull with any γ

There exists a process Z_{t} with values in \mathbb{Z}^{d} such that

$$
\lim _{t \rightarrow \infty} \frac{u\left(t, Z_{t}\right)}{\sum_{z \in \mathbb{Z}^{d}} u(t, z)}=1 \quad \text { in probability. }
$$

- The mass is concentrated at the maximiser Z_{t} of

$$
\Psi_{t}(z)=\xi(z)-\frac{|z|}{t} \log \xi(z)
$$

in the Pareto case, and of a similarly shaped functional Ψ_{t} in the Weibull case.

- For double-exponential potentials the solution $u(t, \cdot)$ is concentrated on one bounded ball. [Biskup, König, dos Santos, '16]

Compliete localisation: localisation site

Theorem 2
[König, Mörters, S. '06] Pareto
[S., Twarowski '12] Weibull with $\gamma<2$
[Fiodorov, Muirhead '13] Weibull with any γ

Compliete localisation: localisation site

Theorem 2
[König, Mörters, S. '06] Pareto
[S., Twarowski '12] Weibull with $\gamma<2$
[Fiodorov, Muirhead '13] Weibull with any γ
As $t \rightarrow \infty$,

$$
\frac{Z_{t}}{r_{t}} \Rightarrow X
$$

where r_{t} is an explicite scale function and X is an \mathbb{R}^{d}-valued random variable with the density known explicitly.

Compliete localisation: localisation site

Theorem 2
[König, Mörters, S. '06] Pareto
[S., Twarowski '12] Weibull with $\gamma<2$
[Fiodorov, Muirhead '13] Weibull with any γ
As $t \rightarrow \infty$,

$$
\frac{Z_{t}}{r_{t}} \Rightarrow X
$$

where r_{t} is an explicite scale function and X is an \mathbb{R}^{d}-valued random variable with the density known explicitly.

$$
r_{t}= \begin{cases}\left(\frac{t}{\log t}\right)^{\frac{\alpha}{\alpha-d}} & \text { in the Pareto case } \\ \frac{t(\log t)^{1 / \gamma-1}}{\log \log t} & \text { in the Weibull case. }\end{cases}
$$

Ageing

Ageing

Waiting time until next change of state:

$$
T_{t}=\inf \left\{s: Z_{t+s} \neq Z_{t}\right\}
$$

Ageing

Waiting time until next change of state:

$$
T_{t}=\inf \left\{s: Z_{t+s} \neq Z_{t}\right\}
$$

$$
\text { Ageing }=T_{t} \text { depends increasingly, and often linearly, on the time } t
$$

Ageing

Waiting time until next change of state:

$$
T_{t}=\inf \left\{s: Z_{t+s} \neq Z_{t}\right\}
$$

$$
\text { Ageing }=T_{t} \text { depends increasingly, and often linearly, on the time } t
$$

Theorem 3
[Mörters, Ortgiese, S. '11] Pareto
[S., Twarowski '12] Weibull with $\gamma<2$

$$
T_{t} / t \Rightarrow \Theta \quad \text { as } t \rightarrow \infty
$$

where Θ is a nongegenerate a.s. positive random variable known explicitly.

Ageing

Waiting time until next change of state:

$$
T_{t}=\inf \left\{s: Z_{t+s} \neq Z_{t}\right\}
$$

$$
\text { Ageing }=T_{t} \text { depends increasingly, and often linearly, on the time } t
$$

Theorem 3
[Mörters, Ortgiese, S. '11] Pareto
[S., Twarowski '12] Weibull with $\gamma<2$

$$
T_{t} / t \Rightarrow \Theta \quad \text { as } t \rightarrow \infty,
$$

where Θ is a nongegenerate a.s. positive random variable known explicitly.

The scaling limit of the whole process $\left(Z_{t}\right)$ can be described in terms of a Poisson point process [Mörters, Ortgiese, S.'11, Pareto].

Almost sure localisation

Recall that (for Pareto and Weibull) we have

$$
\lim _{t \rightarrow \infty} \frac{u\left(t, Z_{t}\right)}{\sum_{z \in \mathbb{Z}^{d}} u(t, z)}=1 \quad \text { in probability. }
$$

Almost sure localisation

Recall that (for Pareto and Weibull) we have

$$
\lim _{t \rightarrow \infty} \frac{u\left(t, Z_{t}\right)}{\sum_{z \in \mathbb{Z}^{d}} u(t, z)}=1 \quad \text { in probability. }
$$

Do we have almost sure complete localisation?

Almost sure localisation

Recall that (for Pareto and Weibull) we have

$$
\lim _{t \rightarrow \infty} \frac{u\left(t, Z_{t}\right)}{\sum_{z \in \mathbb{Z}^{d}} u(t, z)}=1 \quad \text { in probability. }
$$

Do we have almost sure complete localisation? No!

Almost sure localisation

Recall that (for Pareto and Weibull) we have

$$
\lim _{t \rightarrow \infty} \frac{u\left(t, Z_{t}\right)}{\sum_{z \in \mathbb{Z}^{d}} u(t, z)}=1 \quad \text { in probability. }
$$

Do we have almost sure complete localisation? No!

Theorem 4

[König, Lacoin, Mörters, S.] Pareto:
There exist two processes Z_{t} and \hat{Z}_{t} with values in \mathbb{Z}^{d} such that

$$
\lim _{t \rightarrow \infty} \frac{u\left(t, Z_{t}\right)+u\left(t, \hat{Z}_{t}\right)}{\sum_{z \in \mathbb{Z}^{d}} u(t, z)}=1 \quad \text { almost surely. }
$$

Almost sure localisation

Recall that (for Pareto and Weibull) we have

$$
\lim _{t \rightarrow \infty} \frac{u\left(t, Z_{t}\right)}{\sum_{z \in \mathbb{Z}^{d}} u(t, z)}=1 \quad \text { in probability. }
$$

Do we have almost sure complete localisation? No!

Theorem 4

[König, Lacoin, Mörters, S.] Pareto:
There exist two processes Z_{t} and \hat{Z}_{t} with values in \mathbb{Z}^{d} such that

$$
\lim _{t \rightarrow \infty} \frac{u\left(t, Z_{t}\right)+u\left(t, \hat{Z}_{t}\right)}{\sum_{z \in \mathbb{Z}^{d}} u(t, z)}=1 \quad \text { almost surely. }
$$

In the Weibull case this is an open question but is likely to be true.

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Localisation at $Z_{t} \Leftrightarrow$ Contribution of paths from 0 to all $z \neq Z_{t}$ is negilible.

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Localisation at $Z_{t} \Leftrightarrow$ Contribution of paths from 0 to all $z \neq Z_{t}$ is negilible.

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Localisation at $Z_{t} \Leftrightarrow$ Contribution of paths from 0 to all $z \neq Z_{t}$ is negilible.

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

$$
\text { Localisation at } Z_{t} \Leftrightarrow \text { Contribution of paths from } 0 \text { to all } z \neq Z_{t} \text { is negilible. }
$$

For some $r_{t}>\left|Z_{t}\right|$ decompose

$$
u(t, z)=u_{1}(t, z)+u_{2}(t, z)+u_{3}(t, z)
$$

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Localisation at $Z_{t} \Leftrightarrow$ Contribution of paths from 0 to all $z \neq Z_{t}$ is negilible.

For some $r_{t}>\left|Z_{t}\right|$ decompose

$$
u(t, z)=u_{1}(t, z)+u_{2}(t, z)+u_{3}(t, z)
$$

where

- $u_{1}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\text {\{green paths }\}}\right\}$

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Localisation at $Z_{t} \Leftrightarrow$ Contribution of paths from 0 to all $z \neq Z_{t}$ is negilible.

For some $r_{t}>\left|Z_{t}\right|$ decompose

$$
u(t, z)=u_{1}(t, z)+u_{2}(t, z)+u_{3}(t, z)
$$

where

- $u_{1}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\text {\{green paths }\}}\right\}$
- $u_{2}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {brown paths }\}}\right\}$

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Localisation at $Z_{t} \Leftrightarrow$ Contribution of paths from 0 to all $z \neq Z_{t}$ is negilible.

For some $r_{t}>\left|Z_{t}\right|$ decompose

$$
u(t, z)=u_{1}(t, z)+u_{2}(t, z)+u_{3}(t, z)
$$

where

- $u_{1}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\text {\{green paths }\}}\right\}$
- $u_{2}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {brown paths }\}}\right\}$
- $u_{3}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {blue paths }\}}\right\}$

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Localisation at $Z_{t} \Leftrightarrow$ Contribution of paths from 0 to all $z \neq Z_{t}$ is negilible.

For some $r_{t}>\left|Z_{t}\right|$ decompose

$$
u(t, z)=u_{1}(t, z)+u_{2}(t, z)+u_{3}(t, z)
$$

where

- $u_{1}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\text {\{green paths }\}}\right\}$
- $u_{2}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {brown paths }\}}\right\}$
- $u_{3}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {blue paths }\}}\right\}$

They are all negligible.

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Localisation at $Z_{t} \Leftrightarrow$ Contribution of paths from 0 to all $z \neq Z_{t}$ is negilible.

For some $r_{t}>\left|Z_{t}\right|$ decompose

$$
u(t, z)=u_{1}(t, z)+u_{2}(t, z)+u_{3}(t, z)
$$

where

- $u_{1}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\text {\{green paths }\}}\right\}$
- $u_{2}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {brown paths }\}}\right\}$
- $u_{3}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {blue paths }\}}\right\}$

They are all negligible.

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Localisation at $Z_{t} \Leftrightarrow$ Contribution of paths from 0 to all $z \neq Z_{t}$ is negilible.

For some $r_{t}>\left|Z_{t}\right|$ decompose

$$
u(t, z)=u_{1}(t, z)+u_{2}(t, z)+u_{3}(t, z)
$$

where

- $u_{1}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\text {\{green paths }\}}\right\}$ the probability of leaving the box is too low
- $u_{2}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {brown paths }\}}\right\}$
- $u_{3}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {blue paths }\}}\right\}$

They are all negligible.

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Localisation at $Z_{t} \Leftrightarrow$ Contribution of paths from 0 to all $z \neq Z_{t}$ is negilible.

For some $r_{t}>\left|Z_{t}\right|$ decompose

$$
u(t, z)=u_{1}(t, z)+u_{2}(t, z)+u_{3}(t, z)
$$

where

- $u_{1}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\text {\{green paths }\}}\right\}$ the probability of leaving the box is too low
- $u_{2}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {brown paths }\}}\right\}$
- $u_{3}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {blue paths }\}}\right\}$

They are all negligible.

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Localisation at $Z_{t} \Leftrightarrow$ Contribution of paths from 0 to all $z \neq Z_{t}$ is negilible.

For some $r_{t}>\left|Z_{t}\right|$ decompose

$$
u(t, z)=u_{1}(t, z)+u_{2}(t, z)+u_{3}(t, z)
$$

where

- $u_{1}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\text {\{green paths }\}}\right\}$ the probability of leaving the box is too low
- $u_{2}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {brown paths }\}}\right\}$
extreme value theory and point processes
- $u_{3}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {blue paths }\}}\right\}$

They are all negligible.

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Localisation at $Z_{t} \Leftrightarrow$ Contribution of paths from 0 to all $z \neq Z_{t}$ is negilible.

For some $r_{t}>\left|Z_{t}\right|$ decompose

$$
u(t, z)=u_{1}(t, z)+u_{2}(t, z)+u_{3}(t, z)
$$

where

- $u_{1}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\text {\{green paths }\}}\right\}$ the probability of leaving the box is too low
- $u_{2}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {brown paths }\}}\right\}$
extreme value theory and point processes
- $u_{3}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {blue paths }\}}\right\}$

They are all negligible.

Idea of the proof of complete localisation

$$
u(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {all paths from } 0 \text { to } z\}}\right\}
$$

Localisation at $Z_{t} \Leftrightarrow$ Contribution of paths from 0 to all $z \neq Z_{t}$ is negilible.

For some $r_{t}>\left|Z_{t}\right|$ decompose

$$
u(t, z)=u_{1}(t, z)+u_{2}(t, z)+u_{3}(t, z)
$$

where

- $u_{1}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\text {\{green paths }\}}\right\}$ the probability of leaving the box is too low
- $u_{2}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {brown paths }\}}\right\}$
extreme value theory and point processes
- $u_{3}(t, z)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\{\text {blue paths }\}}\right\}$ main part: spectral theory

They are all negligible.

PAM with duplication

PAM with duplication

Let $p \in(0,1)$.
Let $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ be such that $\xi(z)=\xi(-z)$ with probability p but otherwise i.i.d.

PAM with duplication

Let $p \in(0,1)$.
Let $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ be such that $\xi(z)=\xi(-z)$ with probability p but otherwise i.i.d.

PAM with duplication

Let $p \in(0,1)$.
Let $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ be such that $\xi(z)=\xi(-z)$ with probability p but otherwise i.i.d.

PAM with duplication

Let $p \in(0,1)$.
Let $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ be such that $\xi(z)=\xi(-z)$ with probability p but otherwise i.i.d.

PAM with duplication

Let $p \in(0,1)$.
Let $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ be such that $\xi(z)=\xi(-z)$ with probability p but otherwise i.i.d.

PAM with duplication

Let $p \in(0,1)$.
Let $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ be such that $\xi(z)=\xi(-z)$ with probability p but otherwise i.i.d.

PAM with duplication

Let $p \in(0,1)$.
Let $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ be such that $\xi(z)=\xi(-z)$ with probability p but otherwise i.i.d.

PAM with duplication

Let $p \in(0,1)$.
Let $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ be such that $\xi(z)=\xi(-z)$ with probability p but otherwise i.i.d.

PAM with duplication

Let $p \in(0,1)$.
Let $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ be such that $\xi(z)=\xi(-z)$ with probability p but otherwise i.i.d.

We consider the PAM with the potential ξ (PAM with duplication) and assume that

PAM with duplication

Let $p \in(0,1)$.
Let $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ be such that $\xi(z)=\xi(-z)$ with probability p but otherwise i.i.d.

We consider the PAM with the potential ξ (PAM with duplication) and assume that

- the potential has Pareto distribution with parameter $\alpha>1$, i.e.,

$$
P(\xi(0)>x)=x^{-\alpha}, \quad x>1 .
$$

- $d=1$

PAM with duplication

Let $p \in(0,1)$.
Let $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ be such that $\xi(z)=\xi(-z)$ with probability p but otherwise i.i.d.

We consider the PAM with the potential ξ (PAM with duplication) and assume that

- the potential has Pareto distribution with parameter $\alpha>1$, i.e.,

$$
P(\xi(0)>x)=x^{-\alpha}, \quad x>1
$$

[for $\alpha \leq 1$ the solution to the PAM (with or without duplication) explodes]

- $d=1$

PAM with duplication

Let $p \in(0,1)$.
Let $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ be such that $\xi(z)=\xi(-z)$ with probability p but otherwise i.i.d.

We consider the PAM with the potential ξ (PAM with duplication) and assume that

- the potential has Pareto distribution with parameter $\alpha>1$, i.e.,

$$
P(\xi(0)>x)=x^{-\alpha}, \quad x>1
$$

[for $\alpha \leq 1$ the solution to the PAM (with or without duplication) explodes]
[for lighter tails the duplication will not affect the PAM]

- $d=1$

PAM with duplication

Let $p \in(0,1)$.
Let $\left\{\xi(z): z \in \mathbb{Z}^{d}\right\}$ be such that $\xi(z)=\xi(-z)$ with probability p but otherwise i.i.d.

We consider the PAM with the potential ξ (PAM with duplication) and assume that

- the potential has Pareto distribution with parameter $\alpha>1$, i.e.,

$$
P(\xi(0)>x)=x^{-\alpha}, \quad x>1
$$

[for $\alpha \leq 1$ the solution to the PAM (with or without duplication) explodes]
[for lighter tails the duplication will not affect the PAM]

- $d=1$
[$d \geq 2$ is work in progress]

Questions

For $t>0$ and $z \in \mathbb{Z}$, let

$$
\Psi_{t}(z)=\xi(z)-\frac{|z|}{t} \log \xi(z)
$$

Questions

For $t>0$ and $z \in \mathbb{Z}$, let

$$
\Psi_{t}(z)=\xi(z)-\frac{|z|}{t} \log \xi(z)
$$

Very roughly,

$$
u(t, z) \approx e^{t \Psi_{t}(z)}
$$

Questions

For $t>0$ and $z \in \mathbb{Z}$, let

$$
\Psi_{t}(z)=\xi(z)-\frac{|z|}{t} \log \xi(z)
$$

Very roughly,

$$
u(t, z) \approx e^{t \Psi_{t}(z)}
$$

Let Z_{t} be a maximiser of Ψ_{t}.

Questions

For $t>0$ and $z \in \mathbb{Z}$, let

$$
\Psi_{t}(z)=\xi(z)-\frac{|z|}{t} \log \xi(z)
$$

Very roughly,

$$
u(t, z) \approx e^{t \psi_{t}(z)}
$$

Let Z_{t} be a maximiser of Ψ_{t}.

- The standard PAM would localise at Z_{t}.

Questions

For $t>0$ and $z \in \mathbb{Z}$, let

$$
\Psi_{t}(z)=\xi(z)-\frac{|z|}{t} \log \xi(z)
$$

Very roughly,

$$
u(t, z) \approx e^{t \psi_{t}(z)}
$$

Let Z_{t} be a maximiser of Ψ_{t}. Denote

$$
\mathcal{D}_{t}=\left\{\text { duplication at } Z_{t}\right\} .
$$

- The standard PAM would localise at Z_{t}.

Questions

For $t>0$ and $z \in \mathbb{Z}$, let

$$
\Psi_{t}(z)=\xi(z)-\frac{|z|}{t} \log \xi(z)
$$

Very roughly,

$$
u(t, z) \approx e^{t \psi_{t}(z)}
$$

Let Z_{t} be a maximiser of Ψ_{t}. Denote

$$
\mathcal{D}_{t}=\left\{\text { duplication at } Z_{t}\right\} .
$$

- The standard PAM would localise at Z_{t}.
- On the event \mathcal{D}_{t} the points Z_{t} and $-Z_{t}$ are equally good in terms of the value of ξ and distance from the origin.

Questions

For $t>0$ and $z \in \mathbb{Z}$, let

$$
\Psi_{t}(z)=\xi(z)-\frac{|z|}{t} \log \xi(z)
$$

Very roughly,

$$
u(t, z) \approx e^{t \psi_{t}(z)}
$$

Let Z_{t} be a maximiser of Ψ_{t}. Denote

$$
\mathcal{D}_{t}=\left\{\text { duplication at } Z_{t}\right\} .
$$

- The standard PAM would localise at Z_{t}.
- On the event \mathcal{D}_{t} the points Z_{t} and $-Z_{t}$ are equally good in terms of the value of ξ and distance from the origin.
- Will the PAM with duplication localise at both points on the event \mathcal{D}_{t} ?

Questions

For $t>0$ and $z \in \mathbb{Z}$, let

$$
\Psi_{t}(z)=\xi(z)-\frac{|z|}{t} \log \xi(z)
$$

Very roughly,

$$
u(t, z) \approx e^{t \psi_{t}(z)}
$$

Let Z_{t} be a maximiser of Ψ_{t}. Denote

$$
\mathcal{D}_{t}=\left\{\text { duplication at } Z_{t}\right\} .
$$

- The standard PAM would localise at Z_{t}.
- On the event \mathcal{D}_{t} the points Z_{t} and $-Z_{t}$ are equally good in terms of the value of ξ and distance from the origin.
- Will the PAM with duplication localise at both points on the event \mathcal{D}_{t} ?
- If so, what is the proportion of the mass carries by each point?

Questions

For $t>0$ and $z \in \mathbb{Z}$, let

$$
\Psi_{t}(z)=\xi(z)-\frac{|z|}{t} \log \xi(z)
$$

Very roughly,

$$
u(t, z) \approx e^{t \psi_{t}(z)}
$$

Let Z_{t} be a maximiser of Ψ_{t}. Denote

$$
\mathcal{D}_{t}=\left\{\text { duplication at } Z_{t}\right\} .
$$

- The standard PAM would localise at Z_{t}.
- On the event \mathcal{D}_{t} the points Z_{t} and $-Z_{t}$ are equally good in terms of the value of ξ and distance from the origin.
- Will the PAM with duplication localise at both points on the event \mathcal{D}_{t} ?
- If so, what is the proportion of the mass carries by each point?
- What is the probability of \mathcal{D}_{t} ?

Questions

For $t>0$ and $z \in \mathbb{Z}$, let

$$
\Psi_{t}(z)=\xi(z)-\frac{|z|}{t} \log \xi(z)
$$

Very roughly,

$$
u(t, z) \approx e^{t \psi_{t}(z)}
$$

Let Z_{t} be a maximiser of Ψ_{t}. Denote

$$
\mathcal{D}_{t}=\left\{\text { duplication at } Z_{t}\right\} .
$$

- The standard PAM would localise at Z_{t}.
- On the event \mathcal{D}_{t} the points Z_{t} and $-Z_{t}$ are equally good in terms of the value of ξ and distance from the origin.
- Will the PAM with duplication localise at both points on the event \mathcal{D}_{t} ?
- If so, what is the proportion of the mass carries by each point?
- What is the probability of \mathcal{D}_{t} ?

Denote the total mass of the solution by

$$
U(t)=\sum_{z \in \mathbb{Z}} u(t, z)
$$

Answers

Theorem 1 (Muirhead, Pymar, S. '16)
Let $1<\alpha<2$.

Theorem 2 (Muirhead, Pymar, S. '16)
Let $\alpha \geq 2$.

Answers

Theorem 1 (Muirhead, Pymar, S. '16)
Let $1<\alpha<2$.

Theorem 2 (Muirhead, Pymar, S. '16)
Let $\alpha \geq 2$. As $t \rightarrow \infty, \quad \frac{u\left(t, Z_{t}\right)}{U(t)} \rightarrow 1 \quad$ in probability.

Answers

Theorem 1 (Muirhead, Pymar, S. '16)
Let $1<\alpha<2$. Conditionally on no duplication at Z_{t}, as $t \rightarrow \infty$, one point

$$
\frac{u\left(t, Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability. }
$$

Theorem 2 (Muirhead, Pymar, S. '16)
Let $\alpha \geq 2$. As $t \rightarrow \infty$,

$$
\frac{u\left(t, Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability. }
$$

Answers

Theorem 1 (Muirhead, Pymar, S. '16)
Let $1<\alpha<2$. Conditionally on no duplication at Z_{t}, as $t \rightarrow \infty$, one point

$$
\frac{u\left(t, Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability. }
$$

Conditionally on the duplication at Z_{t}, as $t \rightarrow \infty$,

$$
\frac{u\left(t, Z_{t}\right)+u\left(t,-Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability }
$$

Theorem 2 (Muirhead, Pymar, S. '16)
Let $\alpha \geq 2$. As $t \rightarrow \infty$,

$$
\frac{u\left(t, Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability. }
$$

Answers

Theorem 1 (Muirhead, Pymar, S. '16)
Let $1<\alpha<2$. Conditionally on no duplication at Z_{t}, as $t \rightarrow \infty$, one point

$$
\frac{u\left(t, Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability. }
$$

Conditionally on the duplication at Z_{t}, as $t \rightarrow \infty$,

$$
\frac{u\left(t, Z_{t}\right)+u\left(t,-Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability }
$$

and

$$
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} \Rightarrow \Upsilon
$$

where Υ is a random variable with positive density on $(0, \infty)$.

Theorem 2 (Muirhead, Pymar, S. '16)
Let $\alpha \geq 2$. As $t \rightarrow \infty$,

$$
\frac{u\left(t, Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability. }
$$

Answers

Theorem 1 (Muirhead, Pymar, S. '16)
Let $1<\alpha<2$. Conditionally on no duplication at Z_{t}, as $t \rightarrow \infty$, one point

$$
\frac{u\left(t, Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability. }
$$

Conditionally on the duplication at Z_{t}, as $t \rightarrow \infty$,
two points, each with a random amount of mass

$$
\frac{u\left(t, Z_{t}\right)+u\left(t,-Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability }
$$

and

$$
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} \Rightarrow \Upsilon
$$

where Υ is a random variable with positive density on $(0, \infty)$.

Theorem 2 (Muirhead, Pymar, S. '16)
Let $\alpha \geq 2$. As $t \rightarrow \infty$,

$$
\frac{u\left(t, Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability. }
$$

Answers

Theorem 1 (Muirhead, Pymar, S. '16)
Let $1<\alpha<2$. Conditionally on no duplication at Z_{t}, as $t \rightarrow \infty$, one point

$$
\frac{u\left(t, Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability. }
$$

Conditionally on the duplication at Z_{t}, as $t \rightarrow \infty$,
two points, each with a random amount of mass

$$
\frac{u\left(t, Z_{t}\right)+u\left(t,-Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability }
$$

and

$$
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} \Rightarrow \Upsilon
$$

where Υ is a random variable with positive density on $(0, \infty)$.

$$
P\left(\mathcal{D}_{t}\right) \rightarrow \frac{p}{2-p}=\frac{p / 2}{p / 2+q}
$$

Theorem 2 (Muirhead, Pymar, S. '16)
Let $\alpha \geq 2$. As $t \rightarrow \infty$,

$$
\frac{u\left(t, Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability. }
$$

Answers

Theorem 1 (Muirhead, Pymar, S. '16)
delocalised
Let $1<\alpha<2$. Conditionally on no duplication at Z_{t}, as $t \rightarrow \infty$, one point

$$
\frac{u\left(t, Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability. }
$$

Conditionally on the duplication at Z_{t}, as $t \rightarrow \infty$,
two points, each with a random amount of mass

$$
\frac{u\left(t, Z_{t}\right)+u\left(t,-Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability }
$$

and

$$
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} \Rightarrow \Upsilon
$$

where Υ is a random variable with positive density on $(0, \infty)$.

$$
P\left(\mathcal{D}_{t}\right) \rightarrow \frac{p}{2-p}=\frac{p / 2}{p / 2+q}
$$

Theorem 2 (Muirhead, Pymar, S. '16)
still localised
Let $\alpha \geq 2$. As $t \rightarrow \infty$,

$$
\frac{u\left(t, Z_{t}\right)}{U(t)} \rightarrow 1 \quad \text { in probability. }
$$

Increasing duplication for $\alpha \geq 2$

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication?

Increasing duplication for $\alpha \geq 2$

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication?
Let $p=p(n)$ depend on the distance from the origin and chose $p(n) \rightarrow 1$.

Increasing duplication for $\alpha \geq 2$

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication?
Let $p=p(n)$ depend on the distance from the origin and chose $p(n) \rightarrow 1$. Observe that $P\left(\mathcal{D}_{t}\right) \rightarrow 1$.

Increasing duplication for $\alpha \geq 2$

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication?
Let $p=p(n)$ depend on the distance from the origin and chose $p(n) \rightarrow 1$.
Observe that $P\left(\mathcal{D}_{t}\right) \rightarrow 1$.
Theorem 3 (Muirhead, Pymar, S. '17)
Let $\alpha \geq 2$, denote $q(n)=1-p(n)$, and introduce the critical scale

$$
q_{c}(n)= \begin{cases}n^{\frac{2}{\alpha}-1} & \text { if } \alpha>2 \\ \frac{1}{\log n} & \text { if } \alpha=2\end{cases}
$$

Increasing duplication for $\alpha \geq 2$

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication?
Let $p=p(n)$ depend on the distance from the origin and chose $p(n) \rightarrow 1$.
Observe that $P\left(\mathcal{D}_{t}\right) \rightarrow 1$.
Theorem 3 (Muirhead, Pymar, S. '17)
Let $\alpha \geq 2$, denote $q(n)=1-p(n)$, and introduce the critical scale

$$
q_{c}(n)= \begin{cases}n^{\frac{2}{\alpha}-1} & \text { if } \alpha>2 \\ \frac{1}{\log n} & \text { if } \alpha=2\end{cases}
$$

If $q(n) \ll q_{c}(n)$ then

If $q(n) \gg q_{c}(n)$ then

If $q(n) \sim q_{c}(n)$ then

Increasing duplication for $\alpha \geq 2$

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication?
Let $p=p(n)$ depend on the distance from the origin and chose $p(n) \rightarrow 1$.
Observe that $P\left(\mathcal{D}_{t}\right) \rightarrow 1$.
Theorem 3 (Muirhead, Pymar, S. '17)
Let $\alpha \geq 2$, denote $q(n)=1-p(n)$, and introduce the critical scale

$$
q_{c}(n)= \begin{cases}n^{\frac{2}{\alpha}-1} & \text { if } \alpha>2 \\ \frac{1}{\log n} & \text { if } \alpha=2\end{cases}
$$

If $q(n) \ll q_{c}(n)$ then two points, each with half of the mass

If $q(n) \gg q_{c}(n)$ then

If $q(n) \sim q_{c}(n)$ then

Increasing duplication for $\alpha \geq 2$

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication?
Let $p=p(n)$ depend on the distance from the origin and chose $p(n) \rightarrow 1$.
Observe that $P\left(\mathcal{D}_{t}\right) \rightarrow 1$.
Theorem 3 (Muirhead, Pymar, S. '17)
Let $\alpha \geq 2$, denote $q(n)=1-p(n)$, and introduce the critical scale

$$
q_{c}(n)= \begin{cases}n^{\frac{2}{\alpha}-1} & \text { if } \alpha>2 \\ \frac{1}{\log n} & \text { if } \alpha=2\end{cases}
$$

If $q(n) \ll q_{c}(n)$ then
two points, each with half of the mass

If $q(n) \gg q_{c}(n)$ then
one point

If $q(n) \sim q_{c}(n)$ then

Increasing duplication for $\alpha \geq 2$

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication?
Let $p=p(n)$ depend on the distance from the origin and chose $p(n) \rightarrow 1$.
Observe that $P\left(\mathcal{D}_{t}\right) \rightarrow 1$.
Theorem 3 (Muirhead, Pymar, S. '17)
Let $\alpha \geq 2$, denote $q(n)=1-p(n)$, and introduce the critical scale

$$
q_{c}(n)= \begin{cases}n^{\frac{2}{\alpha}-1} & \text { if } \alpha>2 \\ \frac{1}{\log n} & \text { if } \alpha=2\end{cases}
$$

If $q(n) \ll q_{c}(n)$ then
two points, each with half of the mass

If $q(n) \gg q_{c}(n)$ then
one point

If $q(n) \sim q_{c}(n)$ then
two points, each with a random amount of mass

Increasing duplication for $\alpha \geq 2$

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication?
Let $p=p(n)$ depend on the distance from the origin and chose $p(n) \rightarrow 1$.
Observe that $P\left(\mathcal{D}_{t}\right) \rightarrow 1$.
Theorem 3 (Muirhead, Pymar, S. '17)
Let $\alpha \geq 2$, denote $q(n)=1-p(n)$, and introduce the critical scale

$$
q_{c}(n)= \begin{cases}n^{\frac{2}{\alpha}-1} & \text { if } \alpha>2 \\ \frac{1}{\log n} & \text { if } \alpha=2\end{cases}
$$

If $q(n) \ll q_{c}(n)$ then

$$
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} \rightarrow 1 \quad \text { in probability. }
$$

If $q(n) \gg q_{c}(n)$ then
one point

If $q(n) \sim q_{c}(n)$ then
two points, each with a random amount of mass

Increasing duplication for $\alpha \geq 2$

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication?
Let $p=p(n)$ depend on the distance from the origin and chose $p(n) \rightarrow 1$.
Observe that $P\left(\mathcal{D}_{t}\right) \rightarrow 1$.

Theorem 3 (Muirhead, Pymar, S. '17)

Let $\alpha \geq 2$, denote $q(n)=1-p(n)$, and introduce the critical scale

$$
q_{c}(n)= \begin{cases}n^{\frac{2}{\alpha}-1} & \text { if } \alpha>2 \\ \frac{1}{\log n} & \text { if } \alpha=2\end{cases}
$$

If $q(n) \ll q_{c}(n)$ then

$$
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} \rightarrow 1 \quad \text { in probability. }
$$

If $q(n) \gg q_{c}(n)$ then $\quad\left|\log \frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)}\right| \rightarrow \infty \quad$ in probability. one point

If $q(n) \sim q_{c}(n)$ then two points, each with a random amount of mass

Increasing duplication for $\alpha \geq 2$

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication?
Let $p=p(n)$ depend on the distance from the origin and chose $p(n) \rightarrow 1$.
Observe that $P\left(\mathcal{D}_{t}\right) \rightarrow 1$.

Theorem 3 (Muirhead, Pymar, S. '17)

Let $\alpha \geq 2$, denote $q(n)=1-p(n)$, and introduce the critical scale

$$
q_{c}(n)= \begin{cases}n^{\frac{2}{\alpha}-1} & \text { if } \alpha>2 \\ \frac{1}{\log n} & \text { if } \alpha=2\end{cases}
$$

If $q(n) \ll q_{c}(n)$ then
two points, each with half of the mass

$$
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} \rightarrow 1 \quad \text { in probability. }
$$

If $q(n) \gg q_{c}(n)$ then $\quad\left|\log \frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)}\right| \rightarrow \infty \quad$ in probability.
If $q(n) \sim q_{c}(n)$ then
two points, each with a random amount of mass

$$
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} \Rightarrow \Upsilon
$$

where Υ is a random variable with positive density on $(0, \infty)$.

Some proofs

$$
u(t, z) \approx \exp \left\{t \Psi_{t}(z)+\text { error }\right\}
$$

Some proofs

$$
u(t, z) \approx \exp \left\{t \Psi_{t}(z)+\text { error }\right\}
$$

Standard PAM methods:

All points except Z_{t} and $-Z_{t}$ are negligible (in fact, exponentially).

Some proofs

$$
u(t, z) \approx \exp \left\{t \Psi_{t}(z)+\text { error }\right\}
$$

Standard PAM methods:

All points except Z_{t} and $-Z_{t}$ are negligible (in fact, exponentially).

New and hard:

Compare Z_{t} and $-Z_{t}$, that is, understand the error.

Some proofs

$$
u(t, z) \approx \exp \left\{t \Psi_{t}(z)+\text { error }\right\}
$$

Standard PAM methods:

All points except Z_{t} and $-Z_{t}$ are negligible (in fact, exponentially).

New and hard:

Compare Z_{t} and $-Z_{t}$, that is, understand the error.

Feynman-Kac:

Some proofs

$$
u(t, z) \approx \exp \left\{t \Psi_{t}(z)+\text { error }\right\}
$$

Standard PAM methods:

All points except Z_{t} and $-Z_{t}$ are negligible (in fact, exponentially).

New and hard:

Compare Z_{t} and $-Z_{t}$, that is, understand the error.

Feynman-Kac:

$$
u\left(t, \pm Z_{t}\right)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{ds}} \mathbf{1}_{\left\{X_{t}= \pm Z_{t}\right\}}\right\}
$$

Some proofs

$$
u(t, z) \approx \exp \left\{t \Psi_{t}(z)+\text { error }\right\}
$$

Standard PAM methods:

All points except Z_{t} and $-Z_{t}$ are negligible (in fact, exponentially).

New and hard:

Compare Z_{t} and $-Z_{t}$, that is, understand the error.

Feynman-Kac:

$$
u\left(t, \pm Z_{t}\right)=\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} \mathbf{1}_{\left\{X_{t}= \pm Z_{t}\right\}}\right\}=\sum_{y \in \mathcal{P}_{t}^{ \pm}} \underbrace{\mathbb{E}\left\{e^{\int_{0}^{t} \xi\left(X_{s}\right) d s} \mathbf{1}_{\{X \text { follows } y\}}\right\}}_{U(t, y)}
$$

where $\mathcal{P}_{t}^{ \pm}$are the sets of paths on \mathbb{Z} starting at 0 and ending at $\pm Z_{t}$.

Some proofs

$$
u\left(t, \pm Z_{t}\right)=\sum_{y \in \mathcal{P}_{t}^{ \pm}} U(t, y)
$$

Some proofs

$$
u\left(t, \pm Z_{t}\right)=\sum_{y \in \mathcal{P}_{t}^{ \pm}} U(t, y)
$$

- Magic formula:

$$
U(t, y) \sim ?
$$

- Which paths y really contribute to the sum?

Some proofs

$$
u\left(t, \pm Z_{t}\right)=\sum_{y \in \mathcal{P}_{t}^{ \pm}} U(t, y)
$$

- Magic formula:

$$
U(t, y)=\sum_{i=0}^{n} e^{t c_{i}-2 t} \prod_{\substack{k=0 \\ k \neq i}}^{n} \frac{1}{c_{i}-c_{k}}
$$

where $c_{0} \ldots \ldots c_{n}$ are the values of ξ along y

- Which paths y really contribute to the sum?

Some proofs

$$
u\left(t, \pm Z_{t}\right)=\sum_{y \in \mathcal{P}_{t}^{ \pm}} U(t, y)
$$

- Magic formula:

$$
U(t, y)=\sum_{i=0}^{n} e^{t c_{i}-2 t} \prod_{\substack{k=0 \\ k \neq i}}^{n} \frac{1}{c_{i}-c_{k}}
$$

where $c_{0}<\cdots<c_{n}$ are the values of ξ along y

- Which paths y really contribute to the sum?

Some proofs

$$
u\left(t, \pm Z_{t}\right)=\sum_{y \in \mathcal{P}_{t}^{ \pm}} U(t, y)
$$

- Magic formula:

$$
U(t, y) \sim \quad e^{t c_{n}-2 t} \prod_{k=0}^{n-1} \frac{1}{c_{n}-c_{k}}
$$

where $c_{0}<\cdots<c_{n}$ are the values of ξ along y

- Which paths y really contribute to the sum?

Some proofs

$$
u\left(t, \pm Z_{t}\right)=\sum_{y \in \mathcal{P}_{t}^{ \pm}} U(t, y)
$$

- Magic formula:

$$
U(t, y) \sim \frac{t^{m}}{m!} e^{t c_{n}-2 t} \prod_{k=0}^{n-1} \frac{1}{c_{n}-c_{k}}
$$

where $c_{0}<\cdots<c_{n}$ are the values of ξ along y
and m is the number of visits to $\pm Z_{t}$.

- Which paths y really contribute to the sum?

Some proofs

$$
u\left(t, \pm Z_{t}\right)=\sum_{y \in \mathcal{P}_{t}^{ \pm}} U(t, y)
$$

- Magic formula:

$$
U(t, y) \sim \frac{t^{m}}{m!} e^{t c_{n}-2 t} \prod_{k=0}^{n-1} \frac{1}{c_{n}-c_{k}}
$$

where $c_{0}<\cdots<c_{n}$ are the values of ξ along y
and m is the number of visits to $\pm Z_{t}$.

- Which paths y really contribute to the sum?
- $1<\alpha<2$:
- $\alpha \geq 2$.

Some proofs

$$
u\left(t, \pm Z_{t}\right)=\sum_{y \in \mathcal{P}_{t}^{ \pm}} U(t, y)
$$

- Magic formula:

$$
U(t, y) \sim \frac{t^{m}}{m!} e^{t c_{n}-2 t} \prod_{k=0}^{n-1} \frac{1}{c_{n}-c_{k}}
$$

where $c_{0}<\cdots<c_{n}$ are the values of ξ along y and m is the number of visits to $\pm Z_{t}$.

- Which paths y really contribute to the sum?
- $1<\alpha<2$: only the straight path from 0 to $\pm Z_{t}$
- $\alpha \geq 2$.

Some proofs

$$
u\left(t, \pm Z_{t}\right)=\sum_{y \in \mathcal{P}_{t}^{ \pm}} U(t, y)
$$

- Magic formula:

$$
U(t, y) \sim \frac{t^{m}}{m!} e^{t c_{n}-2 t} \prod_{k=0}^{n-1} \frac{1}{c_{n}-c_{k}}
$$

where $c_{0}<\cdots<c_{n}$ are the values of ξ along y and m is the number of visits to $\pm Z_{t}$.

- Which paths y really contribute to the sum?
- $1<\alpha<2$: only the straight path from 0 to $\pm Z_{t}$
- $\alpha \geq 2$: lots of paths

Some proofs

$$
u\left(t, \pm Z_{t}\right)=\sum_{y \in \mathcal{P}_{t}^{ \pm}} U(t, y)
$$

- Magic formula:

$$
U(t, y) \sim \frac{t^{m}}{m!} e^{t c_{n}-2 t} \prod_{k=0}^{n-1} \frac{1}{c_{n}-c_{k}}
$$

where $c_{0}<\cdots<c_{n}$ are the values of ξ along y
and m is the number of visits to $\pm Z_{t}$.

- Which paths y really contribute to the sum?
- $1<\alpha<2$: only the straight path from 0 to $\pm Z_{t}$
- $\alpha \geq 2$: lots of paths

In particular, for $1<\alpha<2$ we have

$$
u\left(t, \pm Z_{t}\right) \sim e^{t \xi\left(Z_{t}\right)-2 t} \prod_{k=0}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(\pm k)}
$$

$1<\alpha<2$

$$
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)}
$$

$1<\alpha<2$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)} \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

$1<\alpha<2$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)} \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx
$$

$1<\alpha<2$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)} \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { non-dupl }} \xi(\pm k) \approx
$$

$1<\alpha<2$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)}{ }^{\uparrow} \begin{array}{r}
\text { normal }
\end{array} \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { non-dupl }} \xi(\pm k) \approx
$$

$1<\alpha<2$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)}{ }^{\substack{\uparrow \\
\text { normal }}} \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { non-dupl }} \xi(\pm k) \approx
$$

$1<\alpha<2$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)}{ }^{\substack{\uparrow \\
\text { normal }}} \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { non-dupl }} \xi(\pm k) \approx
$$

$1<\alpha<2$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)}{ }^{\substack{\uparrow \\
\text { normal }}} \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { non-dupl }} \xi(\pm k) \approx
$$

$1<\alpha<2$

$$
\sum_{i=1}^{n} X_{i} \approx n \mu+n \mathcal{N}
$$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)} \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { non-dupl }} \xi(\pm k) \approx
$$

$1<\alpha<2$

$$
\sum_{i=1}^{n} X_{i} \approx n \mu+n^{1 / \alpha} \mathcal{N}
$$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)}{ }^{\uparrow} \begin{array}{l}
\text { stable }
\end{array} \text { Pareto }(\alpha) \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { non-dupl }} \xi(\pm k) \approx
$$

$1<\alpha<2$

$$
\sum_{i=1}^{n} X_{i} \approx n \mu+n^{1 / \alpha} \mathcal{N}
$$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)}{ }^{\uparrow} \begin{array}{l}
\text { stable }
\end{array} \text { Pareto }(\alpha) \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { non-dupl }} \xi(\pm k) \approx \underbrace{\frac{\mu q\left|Z_{t}\right|}{\xi\left(Z_{t}\right)}}_{\substack{\text { LLN } \\ \text { same for } \pm Z_{t}}}+\underbrace{\frac{\left|Z_{t}\right|^{1 / \alpha}}{\xi\left(Z_{t}\right)} \mathcal{N}^{ \pm}}_{\text {fluctuations }}
$$

$1<\alpha<2$

$$
\sum_{i=1}^{n} X_{i} \approx n \mu+n^{1 / \alpha} \mathcal{N}
$$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)}{ }^{\uparrow} \begin{array}{l}
\text { stable }
\end{array} \text { Pareto }(\alpha) \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
\begin{aligned}
& -\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { non-dupl }} \xi(\pm k) \approx \underbrace{\frac{\mu q\left|Z_{t}\right|}{\xi\left(Z_{t}\right)}}_{\begin{array}{c}
\text { LLN } \\
\text { same for } \pm Z_{t}
\end{array}}+\underbrace{\frac{\left|Z_{t}\right|^{1 / \alpha}}{\xi\left(Z_{t}\right)} \mathcal{N}^{ \pm}}_{\text {fluctuations }} \\
& \text { everything is determined by }
\end{aligned}
$$

$$
\frac{\left|Z_{t}\right|^{1 / \alpha}}{\xi\left(Z_{t}\right)} \asymp
$$

$1<\alpha<2$

$$
\sum_{i=1}^{n} x_{i} \approx n \mu+n^{1 / \alpha} \mathcal{N}
$$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)}{ }^{\uparrow} \begin{array}{l}
\text { stable }
\end{array} \text { Pareto }(\alpha) \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
\begin{aligned}
& \quad-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { non-dupl }} \xi(\pm k) \approx \underbrace{\frac{\mu q\left|Z_{t}\right|}{\xi\left(Z_{t}\right)}}_{\substack{\text { LLN }}}+\underbrace{\frac{\left|Z_{t}\right|^{1 / \alpha}}{\xi\left(Z_{t}\right)} \mathcal{N}^{ \pm}}_{\text {fluctuations }} \\
& \text { Hence everything is determined by } \pm Z_{t}
\end{aligned}
$$

$$
\frac{\left|Z_{t}\right|^{1 / \alpha}}{\xi\left(Z_{t}\right)} \asymp \begin{cases}\infty & \Rightarrow \text { one point dominates } \\ 1 & \Rightarrow \text { random proportion of mass at each point } \\ 0 & \Rightarrow 1 / 2 \text { of the mass at each point }\end{cases}
$$

$1<\alpha<2$

$$
\sum_{i=1}^{n} x_{i} \approx n \mu+n^{1 / \alpha} \mathcal{N}
$$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)}{ }^{\uparrow} \begin{array}{l}
\text { stable }
\end{array} \text { Pareto }(\alpha) \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
\begin{aligned}
& -\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { :non-dupl }} \xi(\pm k) \approx \underbrace{\frac{\mu q\left|Z_{t}\right|}{\xi\left(Z_{t}\right)}}_{\begin{array}{c}
\text { LLN } \\
\text { same for } \pm Z_{t}
\end{array}}+\underbrace{\frac{\left|Z_{t}\right|^{1 / \alpha}}{\xi\left(Z_{t}\right)} \mathcal{N}^{ \pm}}_{\text {fluctuations }} \\
& \text { everything is determined by }
\end{aligned}
$$

$$
\frac{\left|Z_{t}\right|^{1 / \alpha}}{\xi\left(Z_{t}\right)} \asymp \frac{r_{t}^{1 / \alpha}}{a_{t}} \asymp \begin{cases}\infty & \Rightarrow \text { one point dominates } \\ 1 & \Rightarrow \text { random proportion of mass at each point } \\ 0 & \Rightarrow 1 / 2 \text { of the mass at each point }\end{cases}
$$

$1<\alpha<2$

$$
\sum_{i=1}^{n} x_{i} \approx n \mu+n^{1 / \alpha} \mathcal{N}
$$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)}{ }^{\uparrow} \begin{array}{l}
\text { stable }
\end{array} \text { Pareto }(\alpha) \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
\begin{aligned}
& \qquad-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { non-dupl }} \xi(\pm k) \approx \underbrace{\frac{\mu q\left|Z_{t}\right|}{\xi\left(Z_{t}\right)}}_{\text {LLN }}+\underbrace{\frac{\left|Z_{t}\right|^{1 / \alpha}}{\xi\left(Z_{t}\right)} \mathcal{N}^{ \pm}}_{\text {fluctuations }} \\
& \text { Hence everything is determined by } \pm Z_{t}
\end{aligned}
$$

$$
\frac{\left|Z_{t}\right|^{1 / \alpha}}{\xi\left(Z_{t}\right)} \asymp \frac{r_{t}^{1 / \alpha}}{a_{t}} \asymp \begin{cases}\infty & \Rightarrow \text { one point dominates } \\ 1 & \Rightarrow \text { random proportion of mass at each point } \\ 0 & \Rightarrow 1 / 2 \text { of the mass at each point }\end{cases}
$$

Miracle! $a_{t}=r_{t}^{1 / \alpha}$

$1<\alpha<2$

$$
\sum_{i=1}^{n} x_{i} \approx n \mu+n^{1 / \alpha} \mathcal{N}
$$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)}{ }^{\text {stable }} \quad \text { Pareto }(\alpha) \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
\begin{aligned}
& -\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { :non-dupl }} \xi(\pm k) \approx \underbrace{\frac{\mu q\left|Z_{t}\right|}{\xi\left(Z_{t}\right)}}_{\begin{array}{c}
\text { LLN } \\
\text { same for } \pm Z_{t}
\end{array}}+\underbrace{\frac{\left|Z_{t}\right|^{1 / \alpha}}{\xi\left(Z_{t}\right)} \mathcal{N}^{ \pm}}_{\text {fluctuations }} \\
& \text { everything is determined by }
\end{aligned}
$$

$$
\frac{\left|Z_{t}\right|^{1 / \alpha}}{\xi\left(Z_{t}\right)} \asymp \frac{r_{t}^{1 / \alpha}}{a_{t}} \asymp \begin{cases}\infty & \Rightarrow \text { one point dominates } \\ 1 & \Rightarrow \text { random proportion of mass at each point } \\ 0 & \Rightarrow 1 / 2 \text { of the mass at each point }\end{cases}
$$

Miracle! $a_{t}=r_{t}^{1 / \alpha}$
The scale of fluctuations remains finite for all values of $1<\alpha<2$.

$1<\alpha<2$

$$
\sum_{i=1}^{n} x_{i} \approx n \mu+n^{1 / \alpha} \mathcal{N}
$$

$$
\begin{aligned}
\frac{u\left(t, Z_{t}\right)}{u\left(t,-Z_{t}\right)} & \sim \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(k)}: \prod_{k=1}^{Z_{t}} \frac{1}{\xi\left(Z_{t}\right)-\xi(-k)}{ }^{\text {stable }} \quad \text { Pareto }(\alpha) \\
& =\exp \left\{-\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(k)}{\xi\left(Z_{t}\right)}\right)+\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(-k)}{\xi\left(Z_{t}\right)}\right)\right\}
\end{aligned}
$$

Insightful cheating:

$$
\begin{aligned}
& -\sum_{k: \text { non-dupl }} \log \left(1-\frac{\xi(\pm k)}{\xi\left(Z_{t}\right)}\right) \approx \frac{1}{\xi\left(Z_{t}\right)} \sum_{k: \text { :non-dupl }} \xi(\pm k) \approx \underbrace{\frac{\mu q\left|Z_{t}\right|}{\xi\left(Z_{t}\right)}}_{\begin{array}{c}
\text { LLN } \\
\text { same for } \pm Z_{t}
\end{array}}+\underbrace{\frac{\left|Z_{t}\right|^{1 / \alpha}}{\xi\left(Z_{t}\right)} \mathcal{N}^{ \pm}}_{\text {fluctuations }} \\
& \text { everything is determined by }
\end{aligned}
$$

$$
\frac{\left|Z_{t}\right|^{1 / \alpha}}{\xi\left(Z_{t}\right)} \asymp \frac{r_{t}^{1 / \alpha}}{a_{t}} \asymp \begin{cases}\infty & \Rightarrow \text { one point dominates } \\ 1 & \Rightarrow \text { random proportion of mass at each point } \\ 0 & \Rightarrow 1 / 2 \text { of the mass at each point }\end{cases}
$$

Miracle! $a_{t}=r_{t}^{1 / \alpha}$
The scale of fluctuations remains finite for all values of $1<\alpha<2$.

