

Reflections on innovation policy after Covid-19: What does the microeconometric evidence tell us?

<u>Greenwich Political Economy Research Centre</u> (GPERC) and <u>The Institute of Political Economy, Governance, Finance and Accountability</u> (PEGFA) <u>2 July 2020</u>

Mehmet Ugur, University of Greenwich Business Faculty

R&D investment, productivity, knowledge externalities, intellectual property protection, subsidies: Implications for post-Covid innovation policy

I draw on joint research with Sefa Awaworyi, Hoang Luong, Edna Solomon and Eshref Trushin from 2016-2020

Our evidence is based on

- Firm-level data for ~45K UK firms from 1998-2012
- Meta-analysis data from ~250 studies

Methods

- Dynamic panel-data and survival analysis
- Meta-regression analysis

Main take-away

The benefits of business R&D investment are oversold

Business R&D and Productivity 1: Heterogeneity in firm-level evidence

Based on Solomon (2020) - forthcoming in *Economics of Innovation and New Technology*

- Diminishing marginal returns to total R&D inverted-U relationship between returns and R&D intensity – 'fishing out' effect.
- Complementarity between intramural and extramural R&D and between basic and applied/experimental research.
- Returns to publicly funded R&D are insignificant and there is neither complementarity nor substitution between publicly and privately funded R&D.
- Returns to R&D differ by industry/sector and firm type
- Returns are higher among firms that are dominant suppliers of technology (Pavitt class 2) and scale-intensive large firms (Pavitt class 3).

Business R&D and Productivity 2: Heterogeneity in published evidence

Meta-analysis evidence based on Ugur et al. (2016) - Published in *Research Policy*

Meta-analysis evidence, based on 1,253 estimates from 65 primary studies that adopt the primal approach to R&D and productivity

Main findings:

- Estimates are smaller and more heterogeneous than what has been reported in prior reviews;
- Residual heterogeneity among firm-level estimates remains high even after controlling for moderating factors;
- Firm-level and industry-level (social) returns do not differ significantly despite theoretical predictions of higher social returns;
- Estimates are based on revenue productivity hence reflect both efficiency gains and market power.

Business R&D and Productivity 2: Heterogeneity in meta-analysis evidence

Evidence of heterogeneity publication selection bias

	Elasticity estimates at firm level	Elasticity estimates at industry level	Rate-of-return estimates at firm level	Rate-of-return estimates at industry level
Effect of R&D on				
productivity or rate	0.073***	0.066***	0.089***	0.115***
of return				
	(0.015)	(0.022)	(0.018)	(0.037)
Publication bias	0.479	0.501	1.404***	0.746***
	(0.531)	(0.392)	(0.290)	(0.270)
Heterogeneity	98%	86%	81%	17%
Observations	773	135	192	153

Publication selection bias is severe (1.4) or large (0.74) in reported rate-of-return estimates Unexplained heterogeneity is high in 3 out of 4 evidence clusters Industry-level estimates do not indicate larger productivity due to intra-industry spillovers Policy implications: Avoid short-cuts on R&D and productivity; contingent productivity

effects

The search for R&D spillovers (externalities)

- Meta-analysis evidence based on Ugur et al (2019) published in *Research Policy* Theory
- R&D investment is associated with positive externalities
- Spillover effects on productivity are larger than the effect of own R&D
- Hence: Direct and indirect public support for R&D investment is welfare-improving.

Meta-analysis findings based on 983 spillovers and 501 own-R&D effect-size estimates from 60 empirical studies

The 'average' productivity effect of spillovers:

- is smaller than what is reported in most narrative reviews;
- is usually smaller than that of own-R&D;
- differs by spillover types; and
- is practically insignificant when only adequately-powered evidence is considered.

Percentage of adequately-powered evidence is low (30% - 55%).

Publication selection bias and heterogeneity

Spillover effecst

Own R&D effects

Heterogeneity is high as most observations are outside the 95% confidence intervals (dashed lines) Publication selection bias is likely as most observations are above the fixed-effect average (the vertical line)

Average effect size estimates by spillover type and own RD

	Knowledge	Mixed	Rent	All	Own
	Spillovers	Spillovers	Spillovers	Spillovers	R&D
Effect size	0.048***	0.074	0.007	0.038***	0.064***
	(0.017)	(0.050)	(0.023)	(0.014)	(0.012)
Selection bias	2.065***	1.377	2.751***	2.195***	0.808***
	(0.572)	(1.030)	(0.541)	(0.380)	(0.402)
Heterogeneity	98.1%	98.1%	98.1%	98.1%	97.9%
Observations	557	96	327	983	501
Adequately powered	41%	31%	33%	30%	73%

- Spillover effects are smaller than own-R&D effects
- Heterogeneity is high
- Statiscal power is lower in the spillover evidence pool
- The case for public support for business R&D and patent protection is weak.

Does intellectual property protection (IPP) deliver economic benefits?

- Meta-analysis evidence based on Ugur et al (2020) work in progress Theory
- Knowledge externalities: Knowledge is a non-excludable public good
- Without IPP, knowledge production is sub-optimal
- IPP corrects for market failure, but may cause distortions due to monopoly power
- Hence, IPP is potentially welfare-improving.

Meta-analysis findings based on 1,620 effect-size estimates from 92 empirical studies investigating the effect of IPP on growth, productivity, innovation, and technology diffusion.

Overall picture:

- No effect except diffusion
- The diffusion effect is conceptually problematic (see below)
- High levels of heterogeneity and selection bias.

Heterogeneity and selection bias in the evidence on IPP's economic benefits

Effect of IPP on productivity

Heterogeneity and selection bias in the evidence on IPP's economic benefits

Effect of IPRP on innovation - PCCs Funnel plot with pseudo 95% confidence limits 0 05 s.e. of pcc .15 .1 2 25 -.5 n Partial correlation coefficient (PCC)

Effect of IPP on innovation

Effect of IPP on technology diffusion

Multi-outcome meta-regression evidence

	Effect size standardised	Effect size standardised as		
	as partial correlation	Fisher's Z		
	coefficient			
Effect size - Growth	0.0359	0.0371		
	(0.0241)	(0.0236)		
Effect size - Productivity	0.0161	0.0142		
	(0.0195)	(0.0191)		
Effect size - Innovation	-0.0052	-0.0042		
	(0.0142)	(0.0141)		
Effect size - Diffusion	0.0444***	0.0487^{***}		
	(0.0166)	(0.0164)		
Publication bias - Growth	0.557	0.641		
	(0.829)	(0.699)		
Publication bias - Productivity	2.482**	2.748***		
	(1.092)	(0.917)		
Publication bias - Innovation	1.985***	1.977***		
	(0.716)	(0.600)		
Publication bias - Diffusion	2.201***	1.613**		
	(0.834)	(0.696)		
Observations	1618	1619		

What do learn from the evidence on economic benefits of IPP ?

- Countries/industries with higher levels of IPP does not secure higher levels of per-capita GDP growth, total factor productivity levels, or innovation (measured either input measures such R&D investment or output measures such as patents or trade-marks.
- IPP has a small effect on technology diffusion.
- However, diffusion is measured with royalty payments or FDI flows, which are not direct measures of technology diffusion.
- There is severe selection bias in the evidence base.
- The results remain very much the same when the evidence is analysed cluster by cluster.
- Our findings are congruent with narrative review findings.
- Hence: We conclude that the case for IPP is oversold.

Do R&D subsidies generate additionality effects?

Theory

- Knowledge externalities reduces the scope for appropriability of the returns on R&D investment
- R&D investment is risky and likely to be mispriced by the financial markets
- Hence, firms (particularly small and young firms) face a financing constraint
- Overall: Firm investment in R&D may remain sub-optimal; and public support is needed to correct market failures

Treatment-effect estimations based on ~45K UK firms

Based on Ugur et al (2020) – under review in *Economic Journal* indicate the following:

- Information asymmetry and risk aversion leads to suboptimal subsidy allocations and business R&D response to the subsidy
- The subsidy has practically insignificant or no effects on business R&D investment when:
 - R&D investment is in basic research or undertaken during crisis periods (due to risk aversion)
 - Firms are large, old, and closer to the R&D frontier in the industry

Sub-optimal subsidy allocations

85% of the subsidy is allocated to firms above median age

		Private R&D	Private R&D intensity	Subsidy	Subsidy rate	Coverage
Subsidy allocations by ag deciles	ge	(£ bn.)	(Private R&D as % of turnover)	(£ bn.)	(Subsidy as % of private R&D)	(Subsidized firm-years as % of total firm-years)
1 st decile: age \leq 3 years		1.27	4.2	0.14	11	96
2^{nd} decile: $3 < age \le 6$ yr	' S .	3.25	3.8	0.14	4	94
3^{rd} decile: $6 < age \le 9$ yr	rs.	6.57	3.4	0.77	12	93
4 th decile: $9 < age \le 11$ y	rs.	8.46	4.6	0.54	6	93
5 th decile: $11 < age \le 14$	yrs.	14.50	4.1	0.57	4	93
6 th decile: $14 < age \le 17$	yrs.	15.20	3.3	0.95	6	92
7 th decile: $17 < age \le 22$	yrs.	29.10	3.3	2.26	8	92
8 th decile: $22 < age \le 26$	yrs.	26.00	2.3	2.85	11	90
9 th decile: $26 < age \le 31$	yrs.	31.20	2.4	3.03	10	91
10^{th} decile: age > 31 year	rs	59.40	2.0	3.43	6	90
Share of top 50%		82.5%		85.3%		
Share of top 30%		59.8%		63.4%		
Share of top 10%		30.47%		23.37%		

Sub-optimal subsidy allocations

98% of the subsidy is allocated to firms above median employment size

	Private R&D	Private R&D intensity	Subsidy	Subsidy rate	Coverage
Subsidy allocations by size deciles	(£ bn.)	(Private R&D as % of turnover)	(£ bn.)	(Subsidy as % of private R&D)	(Subsidized firm-years as % of total firm-years)
1 st decile: 1 employee	0.23	1.5	0.03	14	96
2 nd decile: 2 employees	0.25	6.1	0.03	12	97
3rd decile: 3 or 4 employees	0.31	3.6	0.04	12	96
4 th decile: 4 <employees <math="">\leq 9</employees>	0.70	2.8	0.07	10	95
5 th decile: 9 <employees≤15< th=""><th>0.95</th><th>1.7</th><th>0.06</th><th>7</th><th>94</th></employees≤15<>	0.95	1.7	0.06	7	94
6 th decile: 15 <employees≤ 25<="" th=""><th>1.52</th><th>2.9</th><th>0.09</th><th>6</th><th>94</th></employees≤>	1.52	2.9	0.09	6	94
7 th decile: 25 <employees≤ 43<="" th=""><th>2.49</th><th>2.3</th><th>0.13</th><th>5</th><th>93</th></employees≤>	2.49	2.3	0.13	5	93
8 th decile: 43 <employees≤ 83<="" th=""><th>4.93</th><th>2.0</th><th>0.22</th><th>4</th><th>92</th></employees≤>	4.93	2.0	0.22	4	92
9 th decile: 83 <employees≤ 205<="" th=""><th>11.20</th><th>2.4</th><th>0.34</th><th>3</th><th>91</th></employees≤>	11.20	2.4	0.34	3	91
10th decile: >205 employees	172.00	2.6	13.70	8	80
Share of top 50%	98.7%		98.4%		
Share of top 30%	96.7%		96.9%		
Share of top 10%	88.23%		93.32%		

The subsidy is ineffective in inducing additionality in basic R&D and during crisis periods

Subsidy effects on growth of:	(1) Full sample	(2) dot-com crisis 2000-2002	(3) Global financial crisis 2008-2010
1. Private R&D intensity	.0457***	.0217	.0235***
	(.0060)	(.0167)	(.0075)
1. R&D personnel intensity	.0456***	.0129	.0365***
	(.0066)	(.0151)	(.0111)
1. Basic R&D intensity	.0063***	.0113***	.0019***
	(.0015)	(.0040)	(.0005)
1. Experimental R&D intensity	.0158***	.0011	.0214***
	(.0072)	(.0104)	(.0052)
1. Applied R&D intensity	.0244***	.0153*	.0077
	(.0036)	(.0092)	(.0079)
Observations in control sample	$N_0 = 10282$	$N_0 = 1821$	$N_0 = 3510$
Observations in treated sample	$N_1 = 133563$	$N_1 = 15955$	$N_1 = 38934$

- Subsidy's effect on basic R&D is practically insignificant in the full sample and during crisis periods.
- The effect on all types of R&D inputs (except basic R&D) is smaller during crisis periods.
- This is due to risk aversion, which is known by the firm but not by the funder

GREENWICH

The subsidy is ineffective when firms are older, larger and closer to the R&D frontier

Quartile	Distance to R&D frontier	Age	Size
Quartile 1 N ₀ = 2782 N ₁ = 22173	0007 (.0084)	.0648*** (.0133)	.0849*** (.0142)
Quartile 2 N ₀ = 1301 N ₁ = 23655	.0037 (.0053)	.0443*** (.0116)	.0275** (.0137)
Quartile 3 N ₀ = 485 N ₁ = 24470	.0248*** (.0055)	.0198 (.0138)	.0004 (.0003)
Quartile 4 N ₀ = 470 N ₁ = 24486	.0495*** (.0134)	0003 (.0006)	.0063 (.0039)

Why the effects of R&D subsidies are inherently heterogenous?

- The source of heterogeneity is the second-best outcomes of contracting under information asymmetry and risk aversion
- Firms with private information about their R&D gaps and effort extract informational rents.
- Informational rents are extracted by firms with a history of success in converting R&D into innovative product lines.
- These firms are larger, older and closer to R&D frontier.
- When firms are risk-averse, their R&D investment is less responsive to policy interventions.
- Hence the policy conundrum in R&D subsidies: it is socially desirable to grant subsidies to basic research and when firms are successful innovators; but subsidies are less likely to be effective under these conditions.

Conclusions

- The effects of R&D on productivity is positive, but highly heterogenous.
- Statement such as "innovation is the main driver of firm performance" are too general to be informative.
- R&D spillovers may exist, but their level of their productivity effects are unobserved.
- Hence, existing estimates are suggestive rather than conclusive.
- Firms need to invest in R&D to benefit from spillovers.
- Hence, the case for public support to business R&D is less clear-cut than what is reflected in current policy orientation.
- This is confirmed by sub-optimal subsidy allocations and second-best subsidy effect.

GREENWICH Discussion: Questions for future research

Questions raised by our findings include, but are not limited to, the following:

- Is private R&D and scientific breakthroughs compatible?
- What does the response to Coivd-19 indicate about the role and limitations of private innovation?
- How to fund research aimed at building resilience against emergencies?
- What is the relationship between public support for business R&D and inequality?
- Is there opacity in national innovation systems and what can be done about it?
- Should we encourage collaboration between corporate and university research?

These are old questions, but the evidence we have uncovered and the Covid-19 experience have increased their relevance.