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Who I am…

 Lecturer in Statistics at the University of Plymouth, since 2013

 PhD in Mathematical Statistics, Warsaw University of Technology 

(2011)

 Research interests:

 Model selection criteria

 Copula modelling

 Flexible estimation using splines

 Sample selection models

 Teaching:

 Statistical inference for undergraduate maths students

 Machine learning for MSc Data Science students



Contents of the talk

 Concepts around hypothesis testing

 P-value

 Type I and Type II errors

 Power

 Common mistakes:

 Not checking statistical assumptions

 Small sample sizes

 Misinterpreting p-values



Introduction

 Easy to obtain results from statistical packages such 

as R, SPSS, etc.

 Equally easy to misinterpret them…

 … leading to conclusions not supported by 

statistical theory.

 Growing realization that many claims in the scientific 

literature may be false (Ioannidis, 2005).

 Failures to replicate many of the published results 

(Open Science Collaboration, 2015).



Example 1: reading experiment

 Two-condition repeated measures self-paced reading 
experiment

 subject versus object relative clauses

 the dependent measure is reading time in milliseconds

 Question: Do the population means of reading time 
between two RC types differ?

 reading time is measured at a particular region of 
interest in the relative clause sentences

 n randomly sampled participants, each of whom read 
multiple instances of subject and object relative 
clauses in a counterbalanced Latin square design.



Example 1: reading experiment

Participant id Item id Condition Reading time (ms)

1 1 SR 505

1 2 SR 601

1 3 SR 710

1 4 OR 452

1 5 OR 550

1 6 OR 640

Exemplary reading time data from a two-condition experiment for one participant who saw six items, three 

from each condition.



Example 1: reading experiment

 For each participant: mean reading time for SR and 
for OR

 Data: 

𝑥1, 𝑥2, … , 𝑥𝑛

where 𝑥𝑖 = the difference between mean reading time for 
SR and for OR for ith participant, 𝑖 = 1,2,… , 𝑛.

 Assumptions: 

 each 𝑥𝑖 comes from the same distribution with 
population mean 𝜇 and std deviation 𝜎,

 all 𝑥𝑖’s are mutually independent

 μ represents the true, unknown difference in means 
between the two RC types.



Example 1: reading experiment

 The hypotheses:   
𝐻0: 𝜇 = 0
𝐻1: 𝜇 ≠ 0

 The test statistic:  

𝑇 =
ҧ𝑥

𝑆𝐸( ҧ𝑥)

where 𝑆𝐸 ҧ𝑥 = ൗ𝑆 𝑛
and S is the sample standard deviation 

of 𝑥1, 𝑥2, … , 𝑥𝑛.

 The distribution of 𝑇 under 𝐻0:

 If 𝑥1, 𝑥2, … , 𝑥𝑛 are normally distributed then 𝑇~𝑡𝑛−1 for any 

𝑛.

 If 𝑛 is large then 𝑇~𝑁 0,1 approximately.



T versus Normal distribution
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T versus Normal distribution

 Roughly speaking, for n>50 the two distributions are 

practically the same…

 For large sample size we may use N(0,1) distribution 

in place of t-distribution.

 For large sample size the Central Limit Theorem 

holds: the sample mean follows a normal distribution 

regardless of the distribution of data. 

 So, we do not necessarily need normally distributed 

data when we deal with sample means and sample 

size is large.



Distribution of T for skewed 

data

 Data:     𝑥1, 𝑥2, … , 𝑥20 ~𝐸𝑥𝑝 1

 𝑇 = ൗҧ𝑥−1
𝑆/ 𝑛



Distribution of T for skewed 

data

 Data:     𝑥1, 𝑥2, … , 𝑥40 ~𝐸𝑥𝑝 1

 𝑇 = ൗҧ𝑥−1
𝑆/ 𝑛



Distribution of T for skewed 

data

 Data:     𝑥1, 𝑥2, … , 𝑥200 ~𝐸𝑥𝑝 1

 𝑇 = ൗҧ𝑥−1
𝑆/ 𝑛



Distribution of T for skewed 

data

 Data:     𝑥1, 𝑥2, … , 𝑥500 ~𝐸𝑥𝑝 1

 𝑇 = ൗҧ𝑥−1
𝑆/ 𝑛



Recommendations on 

assumptions-checking

 Kolmogorov-Smirnov test, Shapiro-Wilk test for 
normality

 Levene’s test for normality

 Visualisations / graphs! They convey more information 
than tests…

 Histograms, QQ-plots, scatterplots.

 Some remedies:

 Small data / non-normality: bootstrapping methods;

 Use robust statistics (Larson-Hall, 2016),

 Bayesian methods with mildly informative priors.



Checking statistical 

assumptions

 “If theoretical insights and pedagogical 

recommendations are to be trusted, they must 

come as the results of the accurate use of 

appropriate methods”   Loewen et al (2014; 379)

 Study quality – the adherence to standards of rigor 

and transparency.

 Assumptions checked and reported – indicator of 

transparency and quality.



Most popular statistical 

procedures

 One-way ANOVA

 Multiple regression

 Independent samples t-test

 Chi-square test



One-way ANOVA

 Equal variances

 Normality

 Independent errors

 Outliers



Multiple regression

 Linearity

 Normality

 Homoscedasticity

 Independent errors

 Multicollinearity

 Outliers

 Sample size



Independent samples t-test

 Normality 

 Equal variances

 Independence



Chi-square test

 Minimum expected frequencies

 Independent variables



Reporting of assumptions-

checking

The percentage of studies that explicitly mentioned that assumptions 
were checked:

 3%   Plonsky and Gass (2011): 174 published papers on L2 interaction across 14 
journals and two edited volumes.

 17%  Plonsky (2013): 606 quantitative studies published from 1990–2010 in two L2 
journals.

 16%  Liu and Brown (2015)  A methodological synthesis of research on corrective 
feedback on L2 writing.

 22% Lindstromberg (2016): 96 quasi-experimental studies in 90 articles, published 
from 1997 to 2015 in Language Teaching Research.

 15.53% (normality)  Plonsky & Ghanbar (2018): methodological synthesis of 
multiple regression in L2 research

 74.7% Al-Hoorie and Vitta (2018): 150 articles published in 2016 or later from 30 
applied linguistics journals

 17% (stringent), 24% (lenient)  Hu and Plonsky (2019):  107 studies in two L2 journals 
over 2012 – 2017.

 17%   Sesé and Palmer (2012): 623 articles published in eight psychology journals



Reporting of assumptions-

checking

 Especially low for t-test.

 The highest for regression.

 Normality is the most frequently checked 

assumption for parametric tests.



Reporting of assumptions-

checking

Causes of the lack of reporting of assumptions-checking:

 No explicit mention of checking assumptions does not necessarily 

mean that researchers did not check assumptions:

self-indicated frequency of checking assumptions: 60% to 80% (Plonsky et al. 

(2017) survey on 364 applied linguists) 

 Word limit / space limitations

 Lack of knowledge / statistical literacy:

14% of PhD students and 30% of professors in a survey of 331 applied linguists felt 

that they had received adequate statistical training (Loewen et al., 2014)



Recommendations on 

assumptions-checking

 Do not just report that assumptions were checked –

state how they were checked.

 Produce online supplementary material.

 Make the raw data set publicly available (e.g. IRIS 

database).

 Make the analysis code available.



P-value

 p-value associated with the observed t-value:

the probability of observing a t-value at least as extreme as the one we 

observed, conditional on the assumption that the null hypothesis is true.

 Reject the null hypothesis 

if this conditional 

probability falls below 𝛼
(usually 0.05).

 P-value is a measure of 

evidence against 𝐻0.



Misconceptions about p-value - 1

A p-value greater than 0.05 tells us that the null 
hypothesis is true.

 Suppose that 𝑡 = 0.8. Then p-value=0.424.

 Can we say we are confident that μ =0?

 Another common example: “There is no effect of 
factor X on dependent variable Y”, based on a p-
value larger than 0.05 in ANOVA. 

 This claim can only be made when power is high.

 We should say: we failed to find evidence against 
𝐻0 (we failed to find an effect in ANOVA).



Misconceptions about p-value - 2

The smaller the p-value, the greater the confidence in 

the specific alternative hypothesis.

 Suppose that 𝑡 =4.29 with ҧ𝑥 = 3 and SE=0.7. Then p-

value=0.000018. 

 Can we say we are confident that μ =3?

 Rejecting the null doesn’t give us any statistical 

evidence for the specific effect our theory predicts, 

 it just gives us evidence against a very specific 

hypothesis that μ = 0.



Misconceptions about p-value - 3

If p-value < 0.05 we have found that 𝐻1 is in fact true.

 No absolute certainty is afforded by the p-value, no 

matter how low it is.

 No matter how low our p-value, we will have a 0.05 

probability of having mistakenly rejected the null 

when the null is in fact true.

 P-value alone should not convince us that the 

effect is “real”; successful replications of the effect 

are much more convincing.



Example 2: ANOVA

Two nested comparisons allow us to draw conclusions about 
interactions.

 Example: 2 × 2 factorial 

design with factors:

 Predicate type: complex vs 

simple.

 Distance between the verb 

and an argument noun: 

long vs short.

Source: Vasishth S and Nicenboim B (2016)



Example 2 cont’d

 One-sample t-tests for the effect of 

distance within complex 

predicates and simple predicates 

separately:

 in complex predicates: 

t(59)=−2.51, p-value=0.02, 

 in simple predicates: 

t(59)=0.52, p-value=0.61.

 Can we now conclude that the 

interaction between the two 

factors exists? 



Example 2 cont’d

 In the first test:
𝐻0: 𝜇𝑠ℎ𝑜𝑟𝑡,𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 𝜇𝑙𝑜𝑛𝑔,𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝐻1: 𝜇𝑠ℎ𝑜𝑟𝑡,𝑐𝑜𝑚𝑝𝑙𝑒𝑥 ≠ 𝜇𝑙𝑜𝑛𝑔,𝑐𝑜𝑚𝑝𝑙𝑒𝑥

 In the second test:
𝐻0: 𝜇𝑠ℎ𝑜𝑟𝑡,𝑠𝑖𝑚𝑝𝑙𝑒 = 𝜇𝑙𝑜𝑛𝑔,𝑠𝑖𝑚𝑝𝑙𝑒

𝐻1: 𝜇𝑠ℎ𝑜𝑟𝑡,𝑠𝑖𝑚𝑝𝑙𝑒 ≠ 𝜇𝑙𝑜𝑛𝑔,𝑠𝑖𝑚𝑝𝑙𝑒

 In the interaction: 
𝐻0: 𝜇𝑠ℎ𝑜𝑟𝑡,𝑠𝑖𝑚𝑝𝑙𝑒 − 𝜇𝑙𝑜𝑛𝑔,𝑠𝑖𝑚𝑝𝑙𝑒 = 𝜇𝑠ℎ𝑜𝑟𝑡,𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝜇𝑙𝑜𝑛𝑔,𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝐻1: 𝜇𝑠ℎ𝑜𝑟𝑡,𝑠𝑖𝑚𝑝𝑙𝑒 − 𝜇𝑙𝑜𝑛𝑔,𝑠𝑖𝑚𝑝𝑙𝑒 ≠ 𝜇𝑠ℎ𝑜𝑟𝑡,𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝜇𝑙𝑜𝑛𝑔,𝑐𝑜𝑚𝑝𝑙𝑒𝑥

 When we do this t-test we find: t(59)=−1.68, p-value=0.1.

 Thus, one must always check whether the interaction is 

significant.



Example 2 cont’d

 This is a real issue in psychology and linguistics and has serious 
consequences for theory development; 

 Many papers have misleading conclusions that follow from 
this error. 

 Example:

 in one experiment a particular effect occurres, 

 but in a subsequent experiment with a new factor the effect 
disappeares, 

 the new factor in the second experiment led to the 
disappearance of the effect?

 This would have been only valid if the relevant interaction 
had been found.

 As evidence, Nieuwenhuis, Forstmann, & Wagenmakers
(2011) present a survey of published articles showing that 
approximately 50% of them (79 articles) draw this incorrect 
inference.



Type I and Type II errors

 Type I error – incorrectly rejecting 𝐻0 when it is true.

 The probability of type I error: 𝛼

 Conventionally fixed at 𝛼 =0.05 before we run an experiment.

 Type II error – incorrectly failing to reject 𝐻0 when it is false.

 Power – the probability of correctly rejecting 𝐻0 when it is false.

Source: Vasishth
S and 
Nicenboim B 
(2016)



Power

 Power is a function: the 
further away μ is from 0, the 
larger the power.

 How to increase power and 
decrease Type II error?

 design an experiment with a 
stronger manipulation, one 
which will lead to a larger 
effect.

 Increase the sample size.

Source: Vasishth S and Nicenboim B (2016)



Power

 How to increase power and decrease Type II 

error?

 measure the dependent measure more precisely, 

thereby reducing the standard deviation.

 For example, eyetracking data is extremely noisy, 

which may lead to an overestimate of the 

standard deviation. More frequent recalibration, 

using better equipment and well-trained 

experimenters could yield better estimates.



Power

 It is especially important to do the best one can to achieve 
high power if we are interested in arguing for the null. 

 Low power implies high Type II error, which means that any 
failure (even repeated failures) to reject the null may just be 
due to the fact that the probability of accepting the null when 
the null is in fact false is very high.

 In order to be able to compute a reasonable estimate of 
power for a future study involving a comparison of two 
conditions, it is helpful to have an estimate of the difference 
between the conditions. 

 Determine a realistic estimate of the true effect size for a 
particular phenomenon:

 meta-analysis,

 literature review,

 knowledge elicited from experts on the topic.



Power

 There is no substitute for attempting to calculate 

power before running an experiment, using the best 

estimates one can obtain.

 It is a mistake to use ‘observed’ power, computed 

after the experiment has been run.



Example 3: LMM with low 

power

 Simulated example

 Simple 2-condition design

 40 participants and 16 items

 Dependent variable: reading time (lognormal 
distribution)

 True effect size: 0.01 for log-transformed outcomes; a 
difference of 4 ms from a grand mean of 550 ms.

 1000 simulated data sets

 For each data set a linear mixed model fitted with a 
log-transformed dependent variable, with varying 
intercepts for subjects and for items.

Source: Vasishth S and Nicenboim B (2016)



Example 3: LMM with low 

power

 Power: proportion of t-values>2 

 0.09

 Type S error: proportion of models with signif. Effect but 
estimated effect in the opposite direction to the true 
effect:

 0.11

 Type M error: mean ratio of the estimated effect to true 
effect:

 5.08

 For low power, we are likely to get an inflated estimate.

 If power is low, the magnitude & sign of the effect may 
not be useful for calculating power in future 
experiments.

Source: Vasishth S and Nicenboim B (2016)



Example 3: LMM with low 

power

 The next simulation illustrates the problem of low 

power by showing potential differences between 

estimates and various true effect sizes. 

 Data as before with different values of true effect 

sizes (0.01, 0.02, 0.03, 0.05, 0.1) and in two flavours: 

 a small sample experiment (but still publishable) with 30 

subjects and 16 items, 

 a medium-sized experiment with 80 subjects and 40 

items



Example 3: low power

 Plot shows estimates under 
different true effect sizes and 
two experiment sizes. 

 Each point represents an 
experiment with a significant 
effect, and for each effect size 
and experiment size, 200 
experiments were simulated. 

 The x-axis shows the true effect 
size on the log scale, the y-axis 
shows the estimate of the 
effect from linear mixed 
models with significant results. 

 The power is shown within the 
figure.

 The dashed line shows the 
ideal situation where the 
estimate and the effects are 
the same.

Source: Vasishth S and Nicenboim B (2016)



Example 3: conclusions

 Exaggerated estimates (Type M errors) are more 
common for low-powered experiments. 

 When the underlying effect is very small, some 
experiments will show results with the incorrect sign 
(Type S error). 

 If researchers mistakenly believe that lower p-values 
give stronger evidence for the specific alternative 
hypothesis then journals publish larger-than-true effect 
sizes 

 If power is very low, and if effect sizes are larger-than-
true then power calculations based on published data 
overestimate power, and thus also overestimate the 
replicability of our results.



Data distribution and power

 if we assume a normal distribution but the true 
distribution has a skew and possibly also 
occasional extreme values, this can also reduce 
power (Ratcliff, 1993)

 Latencies such as reading or response times are 
limited on the left by some amount of time and 
they are right-skewed; as a consequence,

 assuming, as is standardly done in linguistics and 
psychology, that the underlying distribution 
generating the data is normal, can lead to loss of 
power



Data distribution and power

 Reading time or reaction time distributions are best fit with 
three parameter distributions such as:

 ex-Gaussian (the convolution of a Gaussian and an exponential 
distribution), 

 shifted lognormal (the log-transformed normal distribution shifted to 
the right),

 shifted Wald (the inverse of the normal distribution shifted to the 
right); 

 Another way: transform the dependent variable. This can 
reduce the impact of the skew (and of outliers) by 
compressing larger values to a greater extent than smaller 
values:

 the Box-Cox procedure to find the right transformation; 

 for reading times, the reciprocal or the log transformation are often 
adequate, and easy to interpret. 



Low power - summary

 If a study has low power, then it doesn’t matter 

much whether you got a significant result or not. 

 Theory development based on low power studies 

will have a very weak empirical basis, regardless of 

the p-values obtained. 

 The main take-away point here is that we should run 

high powered studies, and attempt to replicate our 

results.



P-values and power

 a true effect and high power will 
almost guarantee a very low p-
value

 the distribution of p-values is uniform 
under the null hypothesis regardless 
of sample size.

 if the null is true, we are as likely to 
find a very low p-value as a very 
high one. So how do we know 
whether we have a very low p-
value because (a) the null is false, or 
because (b) the null is in fact true, 
and therefore a very low p-value is 
as likely as any other value? From a 
single p-value we cannot know this. 

 Therefore, a single p-value shouldn’t 
give us much confidence on our 
theory.

Simulated p-value distributions under a true μ = 0 and under a 

true μ not 0 with low and high power (0.25 and 0.93 

respectively). Vasishth S and Nicenboim B (2016)



Replicability

 Since we don’t know whether the null is true or not, 

a low p-value from a single experiment leaves us 

with no way to make a decision about the effect. 

 One straightforward way to convince oneself 

whether an effect is present is to attempt a 

replication; 

 Repeatedly finding the same effect is much more 

convincing than any single hypothesis test.



Running till significance is 

reached

 The experimenter gathers n data points, then 
checks for significance (whether p < 0.05 or not). 

 If the result is not significant, he/she gets more data 
(n more data points) and checks for significance 
again. 

 A typical initial n might be 15. This approach would 
give us a range of p-values under hypothetical 
repeated sampling. 

 If we track the distribution of the t-statistic for this 
approach, we will find that Type I error is much 
higher than the assumed 5% (in our simulation, 
approximately 15%).



Running till significance is 

reached

The distribution of observed t-values under repeated sampling using the 
stopping rule of run-till-significance. The dashed vertical lines mark the 
boundaries beyond which the p-value would be below 0.05.

Vasishth S and Nicenboim B (2016)



Running till significance is 

reached

 under repeated sampling, some proportion of trials 
which have p > 0.05 will be replaced by trials in which p 
< 0.05, leading to a redistribution of the probability 
mass in the t-distribution.

 This redistribution happens because we give ourselves 
more opportunities to get the desired p < 0.05 under 
repeated sampling. 

 In other words, we have a higher Type I error than 0.05.

 Thus, when using the standard frequentist theory, one 
should either adjust the Type I error when deploying 
stopping rules, or fix one’s sample size in advance 
based on a power analysis.



Degrees of freedom in analysis

 It is often necessary to compare the fits of different 

models.

 Problem: when researchers present models with 

statistically significant results (or ones without, 

depending on what the theoretical claim is). 

 It is common for researchers to explore various 

alternatives and then reason that the one that 

produces a significant result is more likely to be the 

most reliable.



Variance decreases artificially due to 

aggregation

 When a LMM with crossed subject and item random 

effects is suggested by the design, using an ANOVA 

or t-test can artificially reduce the sources of 

variance due to aggregation, with the result that 

effects that are not statistically significant under a 

LMM end up being significant once one aggregates 

the data.

 The LMM is useful in linguistic and psychology 

experiments precisely because it can take all 

sources of variance into account simultaneously.



LMM’s / Outliers

 LMM can solve some of the multiple comparisons 
problems if all relevant research questions can be 
represented as parameters in one coherent 
hierarchical model

 Another solution is to fit independent models but to 
apply some type of correction such as the Bonferroni
correction

 Outliers may indicate a heavy-tailed distribution; 
therefore should not be removed automatically.

 transparency: authors should report failed 
manipulations, and whether the results depend on the 
removal of outliers; release the data and the analysis 
code.



Some remedies

 When new data can be easily gathered, an attractive 
solution is to take results as exploratory until being 
confirmed with new data.

 The exploratory data is used to identify the relevant 
regions, measures and/or ERP components, and to 
make decisions about the model and outliers. 

 Only these potential effects are then tested on the 
confirmatory analysis. 

 Researchers could pair each new experiment with a 
preregistered replication (Nosek, Spies, & Motyl, 2012), 
or gather more data than usual so that the full data set 
could be divided into two subsets.



Conclusions

The best way to use frequentist methods is to:

 ensure appropriately powered hypothesis testing

 Check model assumptions

 Clearly separate exploratory data analysis from 

planned comparisons decided upon in advance

 Attempt to replicate results

Where data are sparse, Bayesian data-analysis 

methods should be considered…
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