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Overview

• Motivation:
• Why Algorithmic Differentiation (AD)
• Why reverse-mode
• Why shared-memory parallel?

• What are the challenges?

• What are previous solutions?

• Some new approaches for AD of parallel codes, for
• simple cases (SSMP),
• slightly harder cases (TF-MAD),

• and some outlook: manual optimisation + verification

Jan Hückelheim � Many-core adjoints 2



Algorithmic differentiation (AD)

• Given a program (”primal”) that implements some function

J = F (α),

• algorithmic differentiation generates a new program that implements
its derivative.
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Algorithmic differentiation (AD)

There are two fundamentally different modes:

Tangent mode

• Computes the Jacobian-vector product

J̇ = (∇F (x)) · α̇.

• Derivatives are propagated along with the original computation.

Adjoint mode

• Computes the transpose Jacobian-vector product

ᾱ = (∇F (x))T · J̄.

• Path through original computation is traced, derivatives are
propagated in reverse order.
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Why would we want AD?

• Example: A fluid dynamics code that computes pressure loss in a pipe,
subject to pipe geometry.

• AD computes derivative of pressure loss wrt. design parameters.

• We could do shape optimisation, and design a pipe with less air
resistance.

• There are many useful optimisation applications: reducing aircraft
noise and fuel consumption, stiffness of bridges, heat transfer of
cooling fins, arrangement of tidal turbines...

• Other applications: Machine learning, high-frequency trading...
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Forward vs. reverse

• Tangent mode is simple to understand and implement, but: Need to
re-run for every input.

• Adjoint mode is cheaper for many inputs and few outputs (run once,
get all directional derivatives).

J

alpha

intermediate
values

Original program Reverse
differentiation

Forward differentiation
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AD approaches

There are at least two ways of implementing AD:

Source-to-source transformation

• Creates code that computes partial derivative of each operation, and
assembles them with chain-rule.

• Fast, efficient, but hard to get right. Mainly Fortran/C

Operator overloading

• Trace the computation at runtime, compute adjoints based on trace.
Slow, huge memory footprint, easy to implement. Works for most
high-level languages.

Optimist: Source transformation efficient, operator overloading easy to use.
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Source transformation example

• Each instruction is augmented by its derivative instruction

• Variables are augmented by derivative variables to store accumulated
chain-rule result

SUBROUTINE FOO_D(a, ad, b, bd)
IMPLICIT NONE
REAL :: a, b
REAL :: ad, bd
INTRINSIC SIN
bd = ad*COS(a)
b = SIN(a)
bd = 2.0*bd
b = 2.0*b

END SUBROUTINE FOO_D

SUBROUTINE FOO(a, b)
IMPLICIT NONE
REAL :: a, b
INTRINSIC SIN
b = SIN(a)
b = 2.0*b

END SUBROUTINE FOO

• Operator overloading would instead trace the forward computation,
and then apply an interpreter to that trace to compute derivatives.
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Why do we need AD for parallel code?

• Processors are no longer becoming much faster at sequential tasks.

Parallelism is used to speed up large computations.

• More compute nodes (each node with its own memory and processor)

• More cores (each processor can do several unrelated things at once)

• Vectors (each core can apply the same operation to multiple values)

Each of these lends itself to different programming models:

• Message-passing (e.g. MPI)

• Shared-memory parallelism (Pthreads, OpenMP, OpenACC)

• SIMD/SIMT vectorisation (intel intrinsics, OpenMP, CUDA, OpenCL)
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AD for MPI

• In principle, everything is easy.

• If the original code sends, the adjoint code must receive.

• If the original code receives, the adjoint code must send.

• ”Some minor problems” with non-blocking communication and other
subtleties.

• Adjoint MPI: libraries are available, and used in practice.
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AD for multi-core/many-core/SIMD

• Most processors today have multiple cores

• Examples:
• Intel Core i5, between 2 and 6 cores
• Intel Xeon Platinum, up to 28 cores
• Intel XeonPhi, up to 68 cores
• Raspberry Pi: 4 core ARM Cortex-A53
• iPhone X: 6 cores (4+2 different cores)

• If we aren’t using the cores, we are wasting resources.

• If the original code is using all cores, the generated adjoint code
should also use them!
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1-slide OpenMP course

• Multiple threads run in parallel (e.g. on multi-core CPU)

• Memory visible to all threads, no explicit communication

• Variables are shared between threads by default, but can be declared
private

• Parallel read-access is fine, parallel write access is a problem

Thread 1 Thread 2

S

PP

Thread 1 Thread 2

S

PP

• Avoid parallel write access, or use atomic/critical sections (that can
only be executed by one thread at a time)
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Reverse AD and OpenMP - the challenge

• Situation: primal code is parallelised with OpenMP.

• Source-transformation used to generate adjoint code.

• Problem 1: We don’t know if and when communication between
threads happens.

• Problem 2: Adjoint may have write conflicts even if the primal doesn’t.
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Example: parallel 1D heat/Burgers/... equation

• Finite-difference scheme:

ri = f (ui−1, ui , ui+1)

• r and u vectors shared

• Write access exclusive for indices in r , overlapping read access

a b c d... ...

T 1

f(a,b,c)

T 2

f(b,c,d)

A B C D... ...

f(*,a,b) f(c,d,*)
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Problem: adjoint doesn’t parallelise!

• Overlapping write access to ū

ā b̄ c̄ d̄... ...

T 1

fb(ā, b̄, c̄)

T 2

Ā B̄ C̄ D̄... ...

fb(b̄, c̄, d̄)fb(∗̄, ā, b̄) fb(c̄, d̄ , ∗̄)
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Exclusive read access

• Overlapping write access to ū happens if there was overlapping read
access from u in primal.

• We can only easily parallelise adjoint if primal had exclusive read
access∗

• How can we detect this?

• What can we do otherwise?
∗ Förster (2014): Algorithmic Differentiation of Pragma-Defined Parallel Regions:
Differentiating Computer Programs Containing OpenMP
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Exclusive read access examples

• Do these loops have exclusive read access?

! Example loop 1

real, dimension(10) :: b,c

!$omp parallel do

do i=1,10

b(i) = sin(c(i))

end do
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Exclusive read access examples

•• Do these loops have exclusive read access?

! Example loop 1

real, dimension(10) :: b,c

!$omp parallel do

do i=1,10

b(i) = sin(c(i))

end do

• Answer: Yes

c

b

Loop 1
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Exclusive read access examples

• Do these loops have exclusive read access?

! Example loop 2:

real :: a

real, dimension(10) :: b,c

!$omp parallel do

do i=1,10

b(i) = a+c(i)

end do
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Exclusive read access examples

•• Do these loops have exclusive read access?

! Example loop 2:

real :: a

real, dimension(10) :: b,c

!$omp parallel do

do i=1,10

b(i) = a+c(i)

end do

• Answer: No

c

b

a

Loop 2
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Exclusive read access examples

• Do these loops have exclusive read access?

! Example loop 3:

real, dimension(10) :: b,c

integer, dimension(10) :: neigh

call read_from_file(neigh)

!$omp parallel do

do i=1,10

b(i) = sin(c(neigh(i)))

end do
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Exclusive read access examples

•• Do these loops have exclusive read access?

! Example loop 3:

real, dimension(10) :: b,c

integer, dimension(10) :: neigh

call read_from_file(neigh)

!$omp parallel do

do i=1,10

b(i) = sin(c(neigh(i)))

end do

• Answer: Depends on file contents

c

b

? Loop 3
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What if there’s no exclusive read?

• Or: what if we are not sure?

• Use atomic operations or critical sections (potentially slow)

• Use OpenMP reduction

b_adj

a_adj
thread 1 Loop 2

a_adj
thread 2

a_adj
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Reduction memory footprint

• Depending on OpenMP implementation, reduction may require
temporary private copy on every thread

• What if the array is large, and we have dozens/hundreds of threads?

c_adj
thread 1

b_adj

? Loop 3

c_adj
thread 2

c_adj
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Case study: Unstructured CFD solver

• The Open-Source Flow Solver ”STAMPS”, written in F90 with
OpenMP, differentiated with Tapenade∗

• Unstructured compressible DNS, LES, DES, RANS, multigrid...
• Inspired by Rolls Royce’s Hydra CFD code
• Mesh is loaded from file (just like ”loop 3” example)

∗ http://www-sop.inria.fr/tropics/tapenade.html
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Primal parallelisation

• Solver loops over edges in graph, edge colouring to avoid conflicts.

do c o l o u r =1, n C o l o u r s
!OMP PARALLEL DO PRIVATE( edge , i , j )
do edge=f i r s t E d g e ( c o l o u r ) , l a s t E d g e ( c o l o u r )

i , j = nodes ( edge )
r e s ( i ) , r e s ( j ) += f l u x ( u ( i ) , u ( j ) )

end do
end do

• All edges of one colour can be done in parallel

1
2

1
2

3

6
7

9
8

4

5
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Adjoint parallelisation

• Hand-coded adjoints would simply re-use the same colouring.

• We imitate this with SSMP - Symmetric shared-memory parallelisation

• J. Hückelheim, P. Hovland, M. Strout, J-D. Müller (2017):
Reverse-mode algorithmic differentiation of an OpenMP-parallel
compressible flow solver. International Journal of High Performance
Computing Applications

1
2

3

6
7

9
8

4

5

Adjoint

1
2

3

6
7

9
8

4

5

Primal
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How does it work?

• Static analysis can not guarantee exclusive read here (edge-node
mapping only known at runtime, mesh dependent)

do c o l o u r =1, n C o l o u r s
!OMP PARALLEL DO PRIVATE( edge , i , j )
do edge=f i r s t E d g e ( c o l o u r ) , l a s t E d g e ( c o l o u r )

i , j = nodes ( edge )
r e s ( i ) , r e s ( j ) += f l u x ( u ( i ) , u ( j ) )

end do
end do

• But: input and output indices are the same (often detectable).

• If read access is not exclusive, then the write access isn’t, either, and
the code has race conditions.

• Assume that the primal code is correct, and conclude that read access
is exclusive (”Garbage in, garbage out approach”)
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Test results

• SSMP allows more efficient parallelisation, compared with conservative
approach using ”atomic” pragmas.

CPU SSMP Atomic Difference

BEND 1.86M 1.61M 13.4%
FEV 2.09M 1.84M 12.0%

RR 3.40M 2.58M 24.1%

MIC MIC SSMP Atomic Difference

BEND 1.99M 1.43M 28.1%
FEV 1.75M 1.34M 23.4%

Number of edge residual updates per second (computational speed) for
FEV, RR, and BEND with 600k nodes.
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The ”slightly harder” case

• Structured-mesh CFD solver, using stencil approach:
• Gather data from neighbours, update local cell. Trivial to parallelise.
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Stencil codes and AD

• Non-exclusive read access, causing data races in conventional adjoint.

• Non-conventional adjoint code is needed.

• TF-MAD: transposed forward-mode algorithmic differentiation,
combines forward and reverse mode to compute adjoints using the
original communication pattern.

• Idea: Split code up into segments where each segment writes to only
one index. The redistribute these segments so that everything that
writes to the same index is collected in the same iteration.
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Parallelising the adjoint, step 1: Look at the primal

• A stencil code that pulls data from neighbours to update some value.

• Outer loop: parallel loop over all nodes i .

• Inner loop: sequential loop, reading from all neighbours of i and
updating i (write/increment denoted by ↑).

• On the right: Small example mesh, we’ll come back to this.

1
2

34

Primal code
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Parallelising the adjoint, step 2: Sequential adjoint

• Primal outer loop is parallel, adjoint outer loop is not.

• Reason: Every inner iteration writes to ūj (some neighbour), and
maybe some other thread is writing to this at the same time.

Primal code Sequential Adjoint code
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Parallelising the adjoint, step 3: Segmented adjoint

• Loop body is split into two segments, each writes to only one index.

Sequential Adjoint code Segmented Adjoint code
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Parallelising the adjoint, step 3: Redistributed adjoint

• “Transpose the off-diagonal term”

• Why does this work? See next slides.

Segmented Adjoint code Redistributed Parallel Adjoint
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Why does this work? Back to the example mesh.

• The maths for this mesh:

1
2

34

~r =


f (~u2, ~u1) + f (~u4, ~u1)

0
0
0


︸ ︷︷ ︸

(let’s look at this term in detail)

+


0

f (~u1, ~u2) + f (~u3, ~u2) + f (~u4, ~u2)
0
0



+


0
0

f (~u2, ~u3) + f (~u4, ~u3)
0

+


0
0
0

f (~u1, ~u4) + f (~u2, ~u4) + f (~u3, ~u4)

 .
(1)
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The first inner iteration in detail

• The primal code computes ~r 1 = f (~u2, ~u1) + f (~u4, ~u1)

• For any i , j , k we define
∂f (ui ,uj )

∂uk
= ∂f i ,j

k

• Then, the tangent-linear code computes

~̇r1 =
[
(∂f 2,1

1 + ∂f 4,1
1 ) ∂f 2,1

2 0 ∂f 4,1
4

]
~̇u1

~̇u2

~̇u3

~̇u4

 .
• The adjoint code computes

~̄u1

~̄u2

~̄u3

~̄u4

+ =


(∂f 2,1

1 + ∂f 4,1
1 )

∂f 2,1
2

0

∂f 4,1
4

~̄r1,
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All iterations together: Standard adjoint

• Every outer iteration writes almost everywhere


~̄u1

~̄u2

~̄u3

~̄u4

 =


(∂f 2,1

1 + ∂f 4,1
1 )~̄r1

∂f 2,1
2 ~̄r1

0

∂f 4,1
4 ~̄r1

+


∂f 1,2

1 ~̄r2

(∂f 1,2
2 + ∂f 3,2

2 + ∂f 4,2
2 )~̄r2

∂f 3,2
3 ~̄r2

∂f 4,2
4 ~̄r2



+


0

∂f 2,3
2 ~̄r3

(∂f 2,3
3 + ∂f 4,3

3 )~̄r3

∂f 4,3
4 ~̄r3

+


∂f 1,4

1 ~̄r4

∂f 2,4
2 ~̄r4

∂f 3,4
3 ~̄r4

(∂f 1,4
4 + ∂f 2,4

4 + ∂f 3,4
4 )~̄r4
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All iterations together: Reorganised adjoint

• Every outer iteration writes only to one index

[
~̄u1

]
=
[
(∂f 2,1

1 + ∂f 4,1
1 )~̄r1 + ∂f 1,2

1 ~̄r2 + ∂f 1,4
1 ~̄r4

]
[
~̄u2

]
=
[
∂f 2,1

2 ~̄r1 + (∂f 1,2
2 + ∂f 3,2

2 + ∂f 4,2
2 )~̄r2 + ∂f 2,3

2 ~̄r3 + ∂f 2,4
2 ~̄r4

]
[
~̄u3

]
=
[
∂f 3,2

3 ~̄r2 + (∂f 2,3
3 + ∂f 4,3

3 )~̄r3 + ∂f 3,4
3 ~̄r4

]
[
~̄u4

]
=
[
∂f 4,1

4 ~̄r1 + ∂f 4,2
4 ~̄r2 + ∂f 4,3

4 ~̄r3 + (∂f 1,4
4 + ∂f 2,4

4 + ∂f 3,4
4 )~̄r4

]
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Speed of reorganised adjoint code (16 CPU threads)

• Reorganisation slows down serial code, but scales better
• Note: Serial times need recompilation without OpenMP
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backward
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2.68

3.54

2.81

4.21 4.16

0.7
0.93

2.22

0.91 0.91

×2.44

p
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ru
n
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m

e
[s

]

serial
parallel

Jan Hückelheim � Many-core adjoints 40



Speed of reorganised adjoint code (240 MIC threads)

• Overhead of atomics larger on many-core machine. Method pays off in
this example.

30

50

70

33.85
43.6

36.58

78.15
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parallel
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backward

0
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4

6 6 6 6 6 6
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Caveats

• Both approaches shown here require certain symmetry conditions
(see our papers below)

• That rules out some ways of handling boundaries (ghost-cells)

• Advantage of reorganisation will be smaller for larger loop bodies
(where code duplication has larger impact)

• There are many other optimisations (polyhedral, cache-blocking, etc.)
that are not taken into account.

Reverse-mode algorithmic differentiation of an OpenMP-parallel compressible flow solver,
International Journal of High Performance Computing Applications, 2017
Parallelisable adjoint stencil computations using transposed forward-mode algorithmic
differentiation, in review
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Outlook: Recent applications of AD

• Machine learning, neural networks:

• Convolutional layers, subsampling layers

• Models are ”trained” to minimise misclassifications

• Training: Back-propagating to find sensitivity of overall error wrt.
weights in each layer

in
p
u
t

o
u
tp
u
t
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Outlook: Recent applications of AD

• Back-propagation and reverse-mode AD is essentially the same

• CNN layers are similar to stencil computations

• CNN layers are performance-critical and often parallelised for GPU and
Multi-Core (this runs on HPC systems, phones, ...)

• Can we recycle our knowledge about shared-memory parallel adjoints?

temperature update

temperature field

stencilwindow

input image

features
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Challenges for modern applications

• Consider this trivial python function:

def f o o ( a , b ) :
return a+b

• If this was Fortran, differentiation would be easy. But in Python:

• a and b could be integers, thus foo non-differentiable

• a and b could be pointers to the same memory location, requiring
special treatment

• a and b could be objects with overloaded operators

• those operators can have side-effects that affect the differentiable part
of the program

• All these problems apply also to C++ code with objects, templates,
preprocessor or typedef

• Additionally, in scripting languages, all this can change at runtime

• AI researchers heavily use libraries from within e.g. R, Python, Julia,
that are coded in other languages, e.g. TensorFlow, NumPy
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Future work needed

• AD tool support for more complicated parallelisation

• AD support of vectorised code

• AD support of scripting language, mixed-language codes

Jan Hückelheim � Many-core adjoints 46



Thank you

Questions?
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