Introductio	n

Post-Keynesian models

Evidence

Summary

Post-Keynesian Endogenous Business Cycle Models

Karsten Kohler

King's College London

karsten.kohler@kcl.ac.uk

9th Post Keynesian Economics Society Summer School, 25/6/2020

Introduction	Modelling business cycles	Post-Keynesian models	Evidence
	000 000 00000	0000	

(1) Introduction

Summary

Modelling business cycles 000 000 00000 Post-Keynesian models

Evidence

Summary

Why booms and busts?

- capitalist economies are characterised by regular booms and busts
- during busts, many people become unemployed, while machines are idle
- shouldn't an efficient economy always fully employ its productive capacity?
- why is it that capitalist economies undergo these (inefficient) fluctuations?

nt	×0.	d	c+		
	100		C.L.	ю.	
_	_	_	_		

Post-Keynesian models

Evidence

Summary

Example: Ups and downs in UK unemployment

Data source: FRED.

Modelling business cycles 000 000 00000 Post-Keynesian models

Evidence

Summary

Explanation I: Exogenous shocks

- in this view, fluctuations are driven by extraneous factors, e.g.
 - technological innovation
 - monetary policy
 - wars, environmental factors, natural disasters (COVID-19?)
- the business 'cycle' represents the adjustment of the economy to those shocks
- imperfections in the economy may amplify shocks, but they do not create cycles by themselves
- without shocks, the economy would not fluctuate
- \rightarrow this is the mainstream take on business cycles

Modelling business cycles 000 000 00000 Post-Keynesian models

Evidence

Summary

Explanation II: Endogenous cycle mechanisms

- in this view, fluctuations are driven by factors that are endogenous to capitalist economies, e.g.
 - explosive multiplier effects contained by supply constraints (Kaldor)
 - financial fragility (Minsky)
 - distributive conflict (Goodwin)
- the business cycle is a genuine cycle: a regular sequence of booms and busts
- shocks can be a further source of fluctuations
- but even without shocks, the economy would fluctuate
- \rightarrow this is the post-Keynesian take on business cycles

Modelling business cycles

Post-Keynesian models

Evidence

Summary

Outline

- 2 Modelling business cycles
 - Type 1: Non-oscillatory adjustment
 - Type 2: Oscillatory adjustment
 - Type 3: Limit cycles
- 3 Post-Keynesian models
 - Kaldor
 - Minsky
- 4 Evidence

5 Summary

Introduction	Modelling business cycles	Post-Keynesian models	Evidence	Summary
	000 000 00000	0000		

	÷				t 1		
8	 5	10	u	~	-		

Modelling	business	cycles
000		
000		
00000		

Post-Keynesian models 0000 0000 Evidence

Summary

A simple framework

Two macroeconomic variables (y_t) and (z_t) interact with each other over time:

$$y_t = f(y_{t-1}, z_{t-1})$$
 (1)

$$z_t = g(y_{t-1}, z_{t-1})$$
 (2)

$$\text{Jacobian matrix} = \begin{bmatrix} \frac{dy_t}{dy_{t-1}} & \frac{dy_t}{dz_{t-1}} \\ \frac{dz_t}{dy_{t-1}} & \frac{dz_t}{dz_{t-1}} \end{bmatrix}$$
(3)

Modelling business cycles

Post-Keynesian models 0000 0000 Evidence

Summary

Type 1: Exogenous shocks and non-oscillatory adjustment

Suppose (1)-(2) is a linear system:

$$y_t = a_1 y_{t-1} + a_2 z_{t-1} \tag{4}$$

$$z_t = b_1 y_{t-1} + b_2 z_{t-1} \tag{5}$$

$$J = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$$
(6)

Modelling business cycles

Post-Keynesian models

Evidence

Summary

Type 1: Shocks and non-oscillatory adjustment

$$J = \left[egin{array}{cc} a_1 & a_2 \ b_1 & b_2 \end{array}
ight]$$

- suppose the interaction between y_t and z_t is such that $a_2 \cdot b_1 \ge 0$
 - either there is no interaction: $a_2 \cdot b_1 = 0$
 - or the interaction goes in the same direction: z_{t-1} pushes up (down) y_t and y_{t-1} pushes up (down) z_t $(a_2, b_1 > 0; a_2, b_1 < 0)$
- what kind of dynamics emerge from this configuration?

Modelling business cycles

Post-Keynesian models

Evidence

Summary

Example: Shock to y_0 and non-oscillatory adjustment

 \rightarrow no genuine cycles, only fluctuations: 'cycle' driven by exogenous shocks

Modelling business cycles

Summary

Type 2: Exogenous shocks and oscillatory adjustment

$$J = \left[egin{array}{cc} a_1 & a_2 \ b_1 & b_2 \end{array}
ight]$$

- suppose next that the interaction between y_t and z_t is $a_2 \cdot b_1 < 0$
- this interaction has opposite signs: y_{t-1} drives up z_t , but z_{t-1} drags down y_t (or vice versa) ($a_2 > 0 \& b_1 < 0$; $a_2 < 0 \& b_1 > 0$)
- in addition, the interaction needs to be sufficiently strong $(|a_2b_1| > \frac{(a_1-b_2)^2}{4})$
- what kind of dynamics emerge from this configuration?

Modelling business cycles

Post-Keynesian models 0000 0000

Evidence

Summary

Example: Shock to y_0 and oscillatory adjustment

 \rightarrow genuine cycles that converge to the equilibrium ('damped oscillations'): (almost) endogenous cycle

Interim discussion

- the nature of fluctuations critically depends on the interaction between the two variables (same or opposite direction?)
- from the perspective of exogenous business cycle theory, oscillations are uninteresting
- exogenous business cycle theory focuses on type-1 fluctuations
- from the perspective of endogenous business cycle theory, oscillations are crucial
- these models thus exhibit interaction mechanisms that yield type-2 fluctuations: $a_2b_1 < 0$
- however, both types of fluctuations ultimately depend on shocks
- even type-2 cycles are not fully endogenous

Modelling business cycles

Post-Keynesian models

Evidence

Summary

Type 3: Limit cycles

Let's go back to the generic system

$$y_t = f(y_{t-1}, z_{t-1})$$

 $z_t = g(y_{t-1}, z_{t-1}).$

Now suppose at least one of the functions f() and g() is nonlinear and $\left(\frac{dy_t}{dz_{t-1}}\right)\left(\frac{dz_t}{dy_{t-1}}\right) < 0.$

For certain kind of nonlinearities, this yields shock-independent cycles.

Modelling business cycles

Post-Keynesian models

Evidence

Summary

Type 3: Limit cycles

Consider the following example:

$$y_t = f(y_{t-1}) + a_2 z_{t-1}$$
(7)
$$z_t = b_1 y_{t-1} + b_2 z_{t-1},$$
(8)

where $f'(y^*) \in (0,1)$, $f''(y^*) > 0$, $f'''(y^*) << 0$.

A function that meets these criteria is the logistic function: $f(y^*) = a_1 \frac{1}{e^{-y^*}}.$

	•	t				÷		n
×	ж)	r,	×1	-	÷	14		× 1.

Post-Keynesian models

Evidence

Summary

Logistic function: $\frac{1}{e^{-x}}$

Modelling business cycles ○○○ ○○○ ○○○ Post-Keynesian models

Evidence

Summary

Type 3: Limit cycles

- we need one more ingredient: *local instability*
 - suppose the system is explosive near its equilibrium point
 - as it gets pushed away from the unstable equilibrium, it becomes stable again
- this can stem from the S-shaped nonlinearity
- the system is thus in permanent motion:
 - close to the equilibrium, it gets pushed away
 - but the destabilising forces gradually become weaker
 - the second variable will eventually pull it back

Modelling business cycles

Post-Keynesian models

Evidence

Summary

Example: Limit cycle

 \rightarrow shock-independent fluctuations: fully endogenous cycle

		÷.,		-1		_	40		
Introduction	uu	u	0	u	u	С	u	0	

Post-Keynesian models

Evidence

Summary

(3) Post-Keynesian business cycle models: Kaldor

Modelling business cycles 000 000 00000 Summary

Kaldor (1940): explosive goods market with supply constraints

- What if multiplier-accelerator effects are strong enough to make the economy unstable? Can this lead to cycles?
- an increase in aggregate income stimulates investment, which creates more income through the Keynesian multiplier effect
- if investment is very sensitive to income, this can render the goods market explosive
- but for high levels of income, supply constraints will make investment inelastic with respect to income
- similarly, in a depressed economy, investment may be inelastic due to weak profit opportunities

Modelling business cycles

Post-Keynesian models

Evidence

Summary

Kaldorian investment function

Modelling business cycles 000 000 00000 Evidence

Summary

Kaldor: output-capital stock interaction

- investment translates into a growing capital stock
- a larger capital stock discourages further investment [why?]
- the two interacting variables are thus output (Y_t) and the capital stock (K_t)
- there is a cyclical interaction mechanism such that $\left(\frac{dK_t}{dY_{t-1}}\right) > 0$ and $\left(\frac{dY_t}{dK_{t-1}}\right) < 0$
- Kaldor's model thus gives rise to type-3 fluctuations: endogenous limit cycles

Modelling business cycles

Post-Keynesian models

Evidence

Summary

Kaldorian limit cycles

Introduction	Modelling business cycles 000 0000 00000	Post-Keynesian models ○○○○ ●○○○	Evidence	Summary

(3) Post-Keynesian business cycle models: Minsky

Modelling business cycles 000 000 00000 Evidence

Summary

Minsky: stability breeds instability

- during good times, private agents take on debt to finance expenditures
- this might be accompanied by rising asset prices (shares, real estate) that improve collateral values \rightarrow local instability
- the economy gradually builds up more debt
- rising debt burdens eventually discourage spending
- agents begin to deleverage to reduce debt
- this creates a downward trajectory as income and asset prices fall

Modelling business cycles 000 000 00000 Post-Keynesian models

Evidence

Summary

Minsky: output-debt interactions

- the two interacting variables are output (Y_t) and private debt
 (D_t)
- there is a cyclical interaction mechanism such that $\left(\frac{dD_t}{dY_{t-1}}\right) > 0$ and $\left(\frac{dY_t}{dD_{t-1}}\right) < 0$
- together with local instability, this can produce endogenous limit cycles

Modelling business cycles

Post-Keynesian models

Evidence

Summary

Minskyan business & financial cycles

----- D(t)

i	÷.,		4	-		
IU	LI	0				п

Post-Keynesian models

Evidence

Summary

(4) Empirical evidence for endogenous cycles

Summary

Can the existence of endogenous cycles be proven?

- the short answer is no
- but we can check whether it's consistent with the data
- a common argument against endogenous cycles is that many macroeconomic time series are very irregular
- but if we combine an endogenous cycle model with (autocorrelated) shocks, we also get fairly random series
- let's compare this with some de-trended series for the UK

Modelling business cycles

Post-Keynesian models

Evidence

Summary

Stochastic limit cycle

This is the same system as above, but with AR(1) error terms u_t added to each equation: $u_t = 0.8u_{t-1} + \epsilon_t$, where $\epsilon_t \sim N(0, 1)$.

	÷									
	ι	I.	U	u	c	L.	IJ	υ	U	

Post-Keynesian models

Evidence

Summary

UK GDP and corporate debt, cyclical components

$$x_{t+8} = \beta_0 + \beta_1 x_t + \beta_2 x_{t-1} + \beta_3 x_{t-2} + \beta_4 x_{t-3} + \nu_{t+8}$$
 (see Hamilton 2018, Rev Ec & Stat).

Finding periodic cycles in the data

- if GDP and corporate debt were driven by a Minskyan endogenous cycle mechanism + shocks, we would expect to find *some* regularity in the data
- a time series tool that allows to detect periodic cycles are spectral density functions (SDFs)
- an SDF shows how much of the variance in a time series is due to periodic frequencies
- peaks in a SDF suggest there is a dominant periodic cycle
- by contrast, if the SDF has no peak, fluctuations are irregular

	÷				÷			
	L	н.	u	Ċ,	u	я,		

Post-Keynesian models

Evidence

Summary

Stochastic limit cycle vs stochastic fluctuations

- first simulated series has cycle mechanism $a_2b_1 < 0$, second doesn't
- Can the SDF detect the difference?

Modelling business cycles 000 000 00000 Post-Keynesian models

Evidence

Summary

Limit cycle vs stochastic fluctuations: SDFs

Note: Parametrically estimated spectral density functions from ARMA model.

- It can!
- How does it look with real data for GDP and corporate debt?

Modelling business cycles 000 000 00000 Post-Keynesian models

Evidence

Summary

SDFs of UK GDP and corporate debt

 \blacksquare GDP and corporate debt exhibit regular cycles of 9 1/2 and 11 1/2 years length

this is consistent with endogenous cycles

Introduction	Modelling business cycles	Post-Keynesian models	Evidence	Summary
	000 000 00000	0000 0000		

(5) Summary

÷									
	÷						÷		
5	۲	۰.	9	u	u	~	۲	9	

Summary

- post-Keynesian theories highlight the endogenous nature of boom-bust cycles
- cycles are driven by interaction mechanisms where variables act upon each other in opposite directions
- combined with nonlinearities, this can create cycles that are independent of shocks
- Kaldorian approaches suggest cyclical interactions between output and capital
- Minskyan approaches consider interactions between output and private debt
- this contrasts with mainstream theories, in which fluctuations are due to exogenous shocks

Modelling business cycles	Post-Keynesian models	Evidence	Summary	
000	0000			
	Modelling business cycles 000 00000	Modelling business cycles Post-Keynesian models 000 0000 0000 0000	Modelling business cycles Post-Keynesian models Evidence 000 0000 0000 000 0000 0000	

Appendix

Modelling business cycles 000 000 00000 Post-Keynesian models

Evidence

Summary

UK GDP and corporate debt, unfiltered

Data sources: BIS, FRED.