

> Aggregate demand and inequalities: wealth, income distribution and gender

> > Özlem Onaran

Outline

- Context and stylized facts
- Theoretical framework
 - A Post-Keynesian/Kaleckian feminist macro model
 - with demand and supply side interaction
 - effects of inequalities
- Empirical findings
- Policy implications

PEGFA I Institute of Political Economy, Governance, Finance and Accountability

University of Greenwich

Source: AMECO www.gre.ac.uk/gperc

CONTINUERSITY of **GREENWICH PEGFA I** Institute of Political Economy, Governance, Finance and Accountability

www.gre.ac.uk/gperc

Figure 9: The share of wages in GDP (adjusted, at factor cost) and wealth concentration

(share of top 1% in total net wealth, λ) in the UK

Source: AMECO for wage share and WIID for wealth concentration

University of Greenwich

UNIVERSITY of GREENWICH PEGFA I Institute of Political Economy, Governance, Finance and Accountability

The ratio of hourly wage rate of men/women (α) and share of women in hours worked (β) in the social sector (H) and the rest of the economy (N) in the UK

University of Greenwich

FT on Onaran and Galanis 2012

News ana

Capital gobbles labour's share, but victory is empty

The big picture

Steve Johnson looks at the wider negative implications of falling wages

In 1958, Walter Reuther, a powerful US union leader was taken on a tour of a newly automated Ford Motor plant. "Aren't you worried about how you're going to collect union dues from all these machines?" he was asked by a (no doubt smug) company manager.

"The thought that occurred to me," Mr Reuther replied, "was how are you going to sell cars to these machines?"

Fifty-five years on, such a debate may be even more pertinent. In the innocent days of 1958, wages accounted for half of America's gross domestic product.

labour's share of the pie than the US or UK.

Richard Lewis, head of global equities at Fidelity Worldwide Investment, who has studied this trend, believes it to be structural rather than cyclical, and therefore unlikely to reverse.

Mr Lewis says globalisation has "lowered the power of labour to bargain," resulting in de-unionisation and the "emasculation" of workers.

Simultaneously, companies have been able to optimise their tax regimes and can engage in both "financial expense" arbitrage (borrowing in the cheapest countries) and regulatory arbitrage.

Most importantly, however, he says globalisation and a move towards supranational corporate entities has made it possible for companies to consolidate their industries more effectively.

What all this means for the investment community is perhaps a little less clear-

labour will continue to be squeezed.

Frances Hudson, global thematic strategist at Standard Life Investments, believes this geographic divide opens the way for relative value trades that favour companies in countries that are becoming more competitive.

To complicate matters further, the academics found the global effect of a squeeze on labour was negative, as the heightened competitiveness export enjoyed by countries with weak wage growth simply reduced the competitiveness of its trading partners - a form of "beggar thy neighbour". A one percentage point fall in labour's share was found to reduce global GDP by 0.36 points.

With this in mind, Mr Greenberg believes we may have to start thinking about a "post-growth" world. "The revenue numbers of the S&P 500 are basically stagnant. Is that going to reverse any time scom? I don't see how it

In 1958, labour's share of economic output accounted for half of US GDP, but the Increasing globalisation and technology, this has fallen to 42%

right all along, and that capitalism ultimately sows the seeds of its own destruction, "when there is no consumer demand and it all falls over".

Mr Greenberg paints a picture of a bleak future

with, barring a "mass uprising", "McJobs" increasingly the norm.

"One thing that does need to change is the idea of shareholder value being the only responsibility of a company," he says, alluding to the 19th ce ers, "who took ity for their en communities." sense that y responsibility for Mr Reuther doubt have com

PEGFA I Institute of Political Economy. Governance, Finance and Accountability

2017년 10월13일 금요일 한거리

2.474.76 +16.60

666 54 +4 23

금리(군고채 3년, 연9 1,900 -0.029

1.133.2 -20

유가(WTI 선물, 딜러/배럴) 51.30 +0.38

"분배는 성장의 결과가 아니라 원천이다"

한겨레경제사회연 '소득주도 성장' 좌담

참석자 스록해머 영국 킹스턴대 교수 오나라 영국 그리니치대 교수 이상헌 ILO 사무차장 정책론보 최명준 언세대 교수 (사회) 정혜준 고려대 교수 주상영 건국대 교수 김연명 중앙대 교수

최근 정치권과 학계에선 문재인 정부의 '소 특주도 성장' 정책을 둘러싼 논쟁이 뜨겁다. '소득주도 성장론'은 가계의 처분가능소득 을 키워 성장을 도모하는 전략이다. 대기업 감세나 규제 완화를 위주로 한 성장 전략을 취해온 역대 정부의 경제정책과는 접근 방 식이 확연히 다르다. 하지만 주류 경제학계 에선 '국가경제를 상대로 한 검증되지 않은 정책 실험'이라는 의구심을 쏟아낸다. "소득

공덕통 〈한겨레〉 회의실에서 '소득주도 성장론의 좌표와 쟁점' 소득주도 성장의 경제·사회정책적 논의' 좌담이 열려 참석자들이 발언하고 있다. 이 번 좌담:

돼야 한다는 점을 꼽았다. 그는 "이 두가지 는 모두 다 '(나랏)돈'이 들지 않는다. 정부의 의지가 더 중요한 셈이다. 앞서 말한 재정 지 출확대로 주거나 교육, 건강, 보건, 그린에너 지 등 사회 투자를 늘려가는 것도 중요하다. 이 과정에서 정부가 사회서비스 분야에 공 공일자리를 적극적으로 만들어 갈 필요도 있다. 이는 여성과 남성 간 임금 격차를 줄이 는데도기여한다"고설명했다.

이 특보는 "노동과 자본 간의 분배뿐만 아 니라 자본 내부의 격차, 노동 내부의 격차를 줄이는 정책도 소득주도 성장의 핵심 과제" 라고 말했다. "한국은 기업 규모에 따라 기업 의 실적에 큰 차이가 있고, 근로형태에 따라 노동 내부에서도 거대한 차이가 존재한다. 이런 차이는 앞서 말한 지대가 한국 경제에 크게 존재한다는 뜻이기도 하다. 그런 점에 서 공정한 경쟁 구조를 만들기 위한 정책도 소득주도 성장 정책의 중요한 부분이다."

Interview at South Korean daily newspaper, Hankyoreh, 13 Oct 2017 "Distribution is not the result of growth, but the source of growth." "When wage is raised, productivity will also be raised".

http://www.hani.co.kr/arti/economy/economy_general/814287.html

University of Greenwich

Effect of income distribution on growth: Contesting theories

- Effect of increasing profit share (falling wage share, rising inequality) on growth?
- Neoclassical
 - wage=cost
 - positive effect on investment
 - Positive effect on exports
- Puzzle
 - Why is growth lower despite a rise in the profit share?
- Post-Keynesian/Post-Kaleckian feminist
 - Synthesis of Marxist, Keynesian and feminist economics

Post-Keynesian/Post-Kaleckian models

- Wages are
 - Cost item: lower wages=
 - higher profitability
 - higher international competitiveness
 - Source of domestic demand
- Lower share of wages in national income (higher profit share) \rightarrow
- 1. lower domestic consumption
 - Marginal propensity to consume (mpc) out of wages >mpc out of profits
- 2. A positive partial effect on investment
 - Investment depends on profitability, but also demand
 - the sensitivity of investment to profits (partial)?
- 3. higher foreign demand (Net exports=Exports-Imports)
 - Unit labor costs $\downarrow \rightarrow$ higher international competitiveness
 - the sensitivity of net exports to unit labor costs; price elasticity of exports and imports; labor intensity of exports

University of Greenwich

- ...Post-Keynesian/Post-Kaleckian models
- Increase in the profit share: + & effects on aggregate demand
 - if total effect is -: wage-led demand
 if total effect is +: profit-led demand
 - Bhaduri and Marglin (1990)
- a flexible/synthesis distribution and growth model
- "Particular models such as that of 'cooperative capitalism' enunciated by the left Keynesian social democrats, the Marxian model of 'profit squeeze' or even the conservative model relying on 'supply-side' stimulus through high profitability and a low real wage... become particular variants of the theoretical framework presented here." (Bhaduri/Marglin 1990, p. 388)'
- social and historical framework determining the parameters
- An empirical research question?
- Onaran and Obst 2015; Onaran and Galanis, 2014; Onaran, Stockhammer, Grafl 2011; Stockhammer, Onaran, Ederer 2009; Stockhammer and Onaran 2004; Onaran and Stockhammer 2005; Hein and Vogel 2009; Naastepad and Storm, 2007; Bowles&Boyer, 1995...

University of Greenwich

PEGFA I Institute of Political Economy, Governance, Finance and Accountability

A Post-Keynesian/Kaleckian feminist macro model: Onaran, Oyvat, Fotopoulou, 2020

Different dimensions of inequalities

Functional income distribution

Bhaduri & Marglin, 1990; Onaran & Galanis, 2014; Onaran & Obst, 2016; Onaran et al 2011; Stockhammer et al., 2009; Hein & Vogel 2008; Naastepad & Storm 2006; Stockhammer & Onaran, 2004

- Gender gaps -Gendering macroeconomics

• Feminist structuralist/Kaleckian

Braunstein et al. 2011, 2018; Seguino 2010, 2012); Pollitt et al 2017 ; Bargawi & Cozzi 2017; Antonopoulos et al., 2010; Ilkkaracan et al., 2015; Ilkkaracan & Kim 2018; De Henau et al. 2016

• Supply-side/real business cycle

Becker et al. 1990; Doepke & Tertilt 2009, 2014, 2016; Agenor & Agenor, 2014; Agenor & Canuto, 2015; Cavalcanti & Tavares, 2016; Fukui et al. 2019; Benhabib et al. 1991, Greenwood & Hercowitz 1991; Lundberg & Pollak 1996; Phipps & Burton, 1998; Esteve-Volart, 2000; Knowles et al. 2002; Morrison et al., 2007; Klasen & Lamanna 2009; Amin, et al., 2015; Gonzales et al., 2015; Cuberes & Teignier 2014

- Wealth concentration

Theoretical aggregate wealth effects: Boyer 2000, Lavoie & Godley 2001-2, van Treeck 2009, Skott & Ryoo 2008, Ryoo & Skott 2013; Hein 2018 Theoretical wealth inequality: Taylor et al,2015, 2018; Petach & Tavani,2018; Palley2012b; 2017; Ederer & Rehm,2018, Zamparelli2016; Botta et al 2019 Empirical aggregate wealth effects: Onaran et al.,2011; Stockhammer & Wildauer,2016; Stockhammer et al.,2018; Kim et al. 2015; Zezza, 2009

• Demand side effects of inequality

• Supply side effects: medium run effects on productivity

New Political Economy: Galor&Zeira1993; Alesina&Rodrik1994; Persson&Tabellini1994; Alesina &Perotti1996; IMF 2009; Berg et al. 012; Cingano 2014 PK: Palley,1996,2012,13,14; Casetti,2003; Dutt, 2006,10,11,13, Naastepad, 2006; Setterfield, 2006; Hein &Tarassow,2010; Tavani &Zamparelli,2017

- Government spending and taxes: Blecker,2002; Mott &Slattery,1994; Hein, 2018; Palley, 2009,13,14, You &Dutt,1996; Dutt,2013; Tavani &Zamparelli2017; Allain 2015; Ko,2018; Commendatore et al. 2011; Obst et al. 2017
- Employment effects not just output

University of Greenwich

UNIVERSITY of GREENWICH PEGFA I Institute of Political Economy, Governance, Finance and Accountability

What is the effect of an increase in female and male wage rate?

- General model: Dual role of wages \rightarrow demand & cost
- Wages & gender gap \rightarrow Income & wealth distribution \rightarrow demand \rightarrow output
- Short-run: (+) & () effects on aggregate demand

(+) consumption:

Marginal propensity to consume in H out of female wages>male w>profit Marginal propensity to consume in N out of male & female w>profit

(-) investment: profit share $\downarrow \rightarrow I \downarrow$ but wealth concentration $\downarrow \& demand \uparrow \rightarrow I \uparrow$

(-) net exports: the sensitivity of net exports to unit labor costs

(price elasticity of exports & imports; labour intensity of exports)

- medium run: labour productivity 1: moderates the effect of wages on profits
- Total effect on demand is ambiguous in the short-run and medium-run
 - -: profit-led economy (mainstream policy assumption)
 - +: wage-led economy
- Gender equality led if female wages ↑ + gender gap ↓ →output↑
- Equality-led = Wage-led + gender equality-led

University of Greenwich

Governance, Finance and Accountability

What is the effect of an increase in public **social** infrastructure?

• Short-run:

- (+) consumption: demand from employees in H
 - labour intensive, higher share of female employment
- (+) investment: rising demand
- (-) effects of public debt/GDP: likely to be small
- medium run: labour productivity in the rest of the economy↑ (GH, Y↑)
 ⇒ investment and net exports ↑
- Employment: Depends on the effect on output and productivity (MR)
 o female share of employment[↑] with greater share of social sector
- Public debt/GDP:
 - Direct + effect, but effects through rising output and productivity

www.gre.ac.uk/gperc

... A Post-Keynesian/Kaleckian feminist macro model

•Sectors of the economy

-social: health, social care, education, child care (H)

-Physical (rest of the economy, N)

-unpaid domestic care sector (reproductive)

• Two income groups: profit and wages -different gender (female and male) –Wage income by male and female workers, and capital income

$$Y_t = WB_t^M + WB_t^F + R_t$$
$$WB_t^F = w_t^{HF} E_t^{HF} + w_t^{NF} E_t^{NF}$$

$$WB_t^M = w_t^{HM} E_t^{HM} + w_t^{NM} E_t^{NM}$$

University of Greenwich

...model

- Private net wealth (PW) function of after tax female & male wage and profit income and its past value $\log(PW_t(1-t_t^{PW})) = a_0 + a_F \log(WB_t^F(1-t_t^W)) + a_M \log(WB_t^M(1-t_t^W)) + a_R \log(R_t(1-t_t^R)) + a_c \log(PW_{t-1}(1-t_{t-1}^{PW}))$
- Wealth concentration= λ =PW1/PW
 - Hourly wage rate $\uparrow \rightarrow$ wage share $\uparrow \rightarrow$ wealth concentration \downarrow
 - gender pay gap↓ and upward convergence ↑→wage share↑, wealth concentration↓
 - Tax on capital income & wealth \rightarrow wealth concentration \downarrow

$$log(\lambda_t) = s_0 + s_1 \log[\pi_t(1 - t_t^R)] + s_2 log(t_t^{PW}) + s_3 log(\alpha_t^N) + s_4 log(\alpha_t^H) + s_5 log(\lambda_{t-1})$$

$$log(PW1_t(1 - t_t^{PW})) = log(PW_t(1 - t_t^{PW})) + log(\lambda_t)$$
$$log(PW99_t(1 - t_t^{PW})) = log(PW_t(1 - t_t^{PW})) + log(1 - \lambda_t)$$

University of Greenwich

...Model: Demand side

- Consumption in H & N (C_H and C_N) functions of:
 - after-tax female & male wage & profit income, PW1 & PW99

$$\begin{split} \log C_t^N &= c_0 + c_R \log[R_t(1 - t_t^R)] \\ &+ c_F \log[(w_t^{NF} E_t^{NF} + w_t^{HF} E_t^{HF})(1 - t_t^W)] \\ &+ c_M \log[(w_t^{NM} E_t^{NM} + w_t^{HM} E_t^{HM})(1 - t_t^W)] + c_{PW1} \log(PW1_t(1 - t_t^{PW})) \\ &+ c_{PW99} \log(PW99_t(1 - t_t^{PW})) \end{split}$$

$$log C_t^H = z_0 + z_R log[R_t (1 - t_t^R)] + z_F log[(w_t^{NF} E_t^{NF} + w_t^{HF} E_t^{HF})(1 - t_t^W)] + z_M log[(w_t^{NM} E_t^{NM} + w_t^{HM} E_t^{HM})(1 - t_t^W)] + z_{PW1} log (PW1_t (1 - t_t^{PW})) + z_{PW99} log (PW99_t (1 - t_t^{PW}))$$

University of Greenwich

...Model: Demand side

- Private Investment function of:
 - after-tax profit share, PW1 & PW99, output, public debt/GDP

$$logI_{t} = i_{0} + i_{1} \log Y_{t} + i_{2} log \left[\pi_{t}(1 - t_{t}^{R})\right] + i_{3} \log\left(\frac{D}{Y}\right)_{t} + i_{4} \log(PW1_{t}(1 - t_{t}^{PW})) + i_{5} \log(PW99_{t}(1 - t_{t}^{PW}))$$

- The profit share in N (π) \downarrow if w of men or women in N \uparrow and \uparrow if productivity (T) in N \uparrow

$$\pi_t = \frac{Y_t^N - w_t^{NF} E_t^{NF} - w_t^{NM} E_t^{NM}}{Y_t^N} = 1 - \frac{(\beta_t^N + \alpha_t^N - \beta_t^N \alpha_t^N) w_t^{NF}}{T_t^N}$$

University of Greenwich

...Model: Demand side

- 3 type of government spending:
 - social infrastructure (G_H), physical, other
- Taxes are collected on wage and capital income, wealth & C
- Debt/GDP depends on government spending, taxes and Y

$$Y_t^H = G_t^H = \kappa_t^H Y_t$$
$$G_t^C = \kappa_t^C Y_t$$
$$I_t^G = \kappa_t^G Y_t$$

 $D_{t} = (1 + r_{t-1}) D_{t-1} + G_{t}^{H} + G_{t}^{C} + I_{t}^{G} - t_{t}^{W} (WB_{t}^{F} + WB_{t}^{M}) - t_{t}^{R} R_{t} - t_{t}^{PW} PW_{t} - t_{t}^{C} (C_{t}^{N} + C_{t}^{H})$

University of Greenwich

...Model: Demand side

- Exports: function of profit share, Yworld, exchange rates
- Imports: function of profit share, Y_N, exchange rates
- Reduced form: prices: mark-up on nominal unit labour costs, imperfect competition
 - profit share $\uparrow \rightarrow$ real unit labour cost $\downarrow \rightarrow$ nominal unit labour cost \downarrow

 $log X_t = x_0 + x_1 log Y_t^{World} + x_2 log \pi_t + x_3 log \varepsilon_t$

 $log M_t = n_0 + n_1 log Y_t^N + n_2 log \pi_t + n_3 log \varepsilon_t$

Governance, Finance and Accountability

...Model: Demand side

 κ_t^H

 Unpaid domestic care: function of per capita GH and CH, and exogenous demographic structure

$$\log \frac{U_t}{N_t} = q_0 + q_G \log \frac{(G_t^H + C_t^H)}{N_t}$$

University of Greenwich

...Model

- •Supply side:
- Productivity (output/hour):
- endogenous in the medium-run in the rest of the economy
- function of
 - wages, output, private & public investment, C_H, unpaid care

$$\log T_t^N = t_0 + t_1 \log \frac{(G_{t-1}^H + C_{t-1}^H)}{N_{t-1}} + t_2 \log \frac{I_{t-1}^G}{N_{t-1}} + t_3 \log Y_{t-1}^N + t_4 \log w_{t-1}^{NF} + t_5 \log(\alpha_{t-1}^N w_{t-1}^{NF}) + t_6 \log \frac{U_{t-1}}{N_{t-1}}$$

$$\log T_t^N = h_0 + h_1 \log \left(\frac{G_{t-1}^H + C_{t-1}^H}{N_{t-1}} \right) + h_2 \log \left(\frac{I_{t-1}^G}{N_{t-1}} \right) + h_3 \log Y_{t-1}^N + h_4 \log w_{t-1}^{NF} + h_5 \log \alpha_{t-1}^N$$

University of Greenwich

... Model

- Employment of men & women in hours
 - Determined by output and productivity
 - Subject to occupational segregation in N and H

$$E_{t}^{NF} = \frac{(1 - \kappa_{t}^{H}) Y_{t}}{T_{t}^{N}} \beta_{t}^{N} = \frac{Y_{t}^{N}}{T_{t}^{N}} \beta_{t}^{N}$$

$$E_{t}^{NM} = \frac{(1 - \kappa_{t}^{H}) Y_{t}}{T_{t}^{N}} (1 - \beta_{t}^{N}) = \frac{Y_{t}^{N}}{T_{t}^{N}} (1 - \beta_{t}^{N})$$

$$E_{t}^{HF} = \frac{\beta_{t}^{H} \kappa_{t}^{H} Y_{t}}{w_{t}^{FH} (\beta_{t}^{H} + \alpha_{t}^{H} - \beta_{t}^{H} \alpha_{t}^{H})}$$

$$E_{t}^{HM} = \frac{(1 - \beta_{t}^{H}) \kappa_{t}^{H} Y_{t}}{w_{t}^{FH} (\beta_{t}^{H} + \alpha_{t}^{H} - \beta_{t}^{H} \alpha_{t}^{H})}$$

University of Greenwich

Purple green red new deal

- public social and physical infrastructure investment/GDP¹%-point
- increase wages & close gender gap via upward convergence
 - 2% \uparrow in female wages and 1% \uparrow in male wages
- progressive income and wealth taxation
 - tax rate on profit income \uparrow 1%-point
 - tax rate on wages \downarrow 1%-point
 - tax rate on wealth ↑ 1%-point
- higher output in both short run and medium run
 - output ↑ 10.9% in the UK (in Medium Run)
- Employment of both women & men ↑ in both short & medium run
 - − E_{female} ↑ 9.6%, E_{male} ↑ 5.8% (in Medium Run)
- Improved public finance
 - public debt/GDP ↓ 10.3%-point (in Medium Run)
- Tax wealth, invest in a caring and sustainable society

University of Greenwich

PEGFA I Institute of Political Economy, Governance, Finance and Accountability

UNIVERSITY of

- ... Summary of the results in the UK: labour market policies
- Equality-led = Wage-led + gender equality-led
- 1%↑ wage in social sector →output↑ in both short (0.5%) & medium run (0.3%)
- 1%↓ gender pay gap in H→output↑ in both short (0.3%) & medium run (0.2%)
- 1% \uparrow wage in the rest of the economy \rightarrow output \uparrow in short (0.2%) & medium run (0.1%)
- 1% ↓gender pay gap in N→output↑ in both short (0.1%) & medium run (0.03%)
 - Smaller than effects of w in N
- Consumption ↑; not just the level but also composition change
 - more income in the hands of women $\rightarrow C$ on education,health, care
 - gender equality $\uparrow \rightarrow$ Social infrastructure
- Private investment \uparrow : w $\uparrow \rightarrow$ profit share $\downarrow \rightarrow I \downarrow$ but PW1/PW $\downarrow \&$ PW1 $\downarrow \& demand \uparrow \rightarrow I \uparrow$
 - productivity \uparrow in MR ${\rightarrow} I \uparrow$
- Net export effects small
- but output effects overall small, in MR strong productivity effects
- \rightarrow Employment \uparrow in SR but in MR employment \downarrow
 - Etot \downarrow 0.5% if w \uparrow in N
 - if w \uparrow in H, in MR Ef \uparrow (0.02%) but Em \downarrow (0.07%)
- Full employment requires public investment, in particular in the medium run

University of Greenwich

...Purple green red new deal: international policy coordination

- Effects are strongest when coordinated across countries
- fiscal policy effects are still very strong even when applied in a single country
 - EU wage and fiscal pol:
 - Obst, T., Onaran, Ö., Nikolaidi, M. 2020 "The effects of income distribution and fiscal policy on aggregate demand, investment and the budget balance: the case of Europe", Cambridge Journal of Economics
 - G20 wage policies
 - Onaran, Ö. and Galanis, G. 2014 "Income distribution and aggregate demand: National and global effects" Environment and Planning A
- estimations for South Korea
 - Oyvat, C., Onaran, O, 2020. The effects of public social infrastructure and gender equality on output and employment: the case of South Korea. <u>CWE-GAM Working Paper</u>: Program on Gender Analysis in Economics (PGAE)

Fallacy of composition: Inconsistency of the Macro vs. Micro rationale

- Firm vs. aggregate/national
- National vs. regional/global level
- Economic globalization may make small open economies more likely to be profit-led
- But political globalization →race to the bottom in labour share
 - international competitiveness effects are eliminated
 - makes economies more likely to be wage-led
 - Planet earth is wage-led, unless we trade with Mars!

University of Greenwich

PEGFA I Institute of Political Economy, Governance, Finance and Accountability

Purple green red new deal and rebuilding an economy for all in the aftermath of the Covid19 crisis

- National/collective/municipal/cooperative ownership, democratic participatory planning in key industries
 - Health, social care, education, child care, transport, energy, housing, banking, food, municipal services
- Universal free basic services
- Permanent shorter working hours with wage compensation (for lower wage earners
 - Downward convergence in hours
 - Travel time part of working time with social distancing? Work from home?
- Unions and collective bargaining; ban zero hours contracts, false selfemployment practices,
- Financial support for firms must come with conditionality/equity ownership
 - no workers are to be laid off; trade union representation
 - Ecological
 - No dividends, bonuses for CEOs, share buybacks
 - No tax evasion
- Debt moratorium, restructuring/linking to income/cancellation

Secured and unsecured debt, utility, tax payments of households, SMEs / rent controls / developing and emerging
 University of Greenwich
 www.gre.ac.uk/gperc

Conclusion

- Equitable and sustainable development needs green and purple public investment and pay rise for both women and men and shorter hours!
- Advice:
- Take care of full employment, decent pay for women and men, equality, and ecological sustainability, and the budget will take care of itself.

PEGFA/GPERC Webinars

- 21st May, Dr. Alberto Botta: Debt monetazation and EU recovery bonds: fighting the Covid-19 crisis
- **28th May, Prof. Ozlem Onaran**: Investing in social infrastructure and equality: lessons for macroeconomic policy from the pandemic
- 4th June, Dr. Robert Calvert Jump: Covid-19 and the public finances: Another ten year of austerity?
- **11th June, Ben Tippet**: Class in the time of Covid-19: How the crisis has exposed class divides
- 18th June, Dr. Maria Nikolaidi: Greening the Bank of England Covid-19 QE
- June 22, Dr Adotey Bing-Pappoe Cooperatives, democracy, equality and efficiency
- **2nd July, Prof. Mehmet Ugur**: Reflections on innovation policy after Covid-19: What does the econometric evidence tell us?
- **9th July, Dr. Alexander Guschanski**: The political economy of income distribution: Why is income inequality increasing and what can we do about it?
- 14th July, Dr. Rafael Wildauer: Is the European Green Deal ambitious enough?
- 16th July, Dr. Jeff Powell: Covid-19: is this the end of financialization?

Register at <u>https://www.gre.ac.uk/business/research/centres/gperc/news/events</u>

Pluralist economics at MSc Economics, UG and PhD at University of Greenwich

- <u>https://www.gre.ac.uk/postgraduate-courses/bus/econ</u>
- Tackle economic issues relevant to the real world in the post-2008 Great Recession and post-Covid era; to think outside conventional boundaries
- Develop a critical perspective about economic theories by comparing different theories and their policy implications in a pluralistic fashion
- Mainstream: Classical, monetarist, new classical, real business cycle, new Keynesian
- Heterodox: Keynesian, post-Keynesian, Marxist, feminist

Suggested Readings

Bhaduri, A. and Marglin, S. (1990). Unemployment and the real wage: the economic basis for contesting political ideologies. Cambridge Journal of Economics, 14(4): 375-93.

Onaran, O, Oyvat, C., Fotopoulou, F. 2019. The effects of gender inequality, wages, wealth concentration and fiscal policy on demand, productivity, employment and public finance., ESRC/Rebuilding Macroeconomics Project.

Report https://gala.gre.ac.uk/id/eprint/24018/ and Policy Brief https://gala.gre.ac.uk/id/eprint/24735/

Onaran, Ö. and Galanis, G. (2014). Onaran, Ö. and Galanis, G. "Income distribution and aggregate demand: National and global effects" Environment and Planning A, 46 (2), 373-397

Obst, T., Onaran, Ö. and Nikolaidi, M. (2017), "The effect of income distribution and fiscal policy on growth, investment, and budget balance: the case of Europe", Cambridge Journal of Economics, https://doi.org/10.1093/cje/bez045 Available at Greenwich Papers in Political Economy, University of Greenwich, #GPERC43

Kalecki, M. 1943. "Political Aspects of Full Employment" Political Quarterly, http://mrzine.monthlyreview.org/2010/kalecki220510.html

University of Greenwich

• Appendix

University of Greenwich

The demand regimes in the short-run

	Wage-led in the short run	Profit-led in the short-run
	Impact of $w_t^{NF} \& w_t^{NM}$ (constant α_t^N) on	
	total consumption	Impact of $w_t^{NF} \& w_t^{NM}$ (constant α_t^N) on
	>	investment + net exports
Female	Impact of $w_t^{NF} \& w_t^{NM}$ (constant α_t^N) on	>
wage-led/	investment + net exports	Impact of $w_t^{NF} \& w_t^{NM}$ (constant α_t^N) on
gender		total consumption
equality-led	&	>
in the short-		Impact of w_t^{NF} on total consumption
run	Impact of w_t^{NF} on total consumption	>
	>	Impact of w_t^{NF} on investment + net
	Impact of w_t^{NF} on investment + net	exports
	exports	
		Impact of $w_t^{NF} \& w_t^{NM}$ (constant α_t^N) on
	Impact of $w_t^{NF} \& w_t^{NM}$ (constant α_t^N) on	total consumption
	total consumption	<
	>	Impact of $w_t^{NF} \& w_t^{NM}$ (constant α_t^N) on
Gender	Impact of $w_t^{NF} \& w_t^{NM}$ (constant α_t^N) on	investment + net exports
inequality-	investment + net exports	
led in the	>	&
short-run	Impact of w_t^{NF} on investment + net	
	exports	Impact of w_t^{NF} on total consumption
	>	<
	Impact of w_t^{NF} on total consumption	Impact of w_t^{NF} on investment + net
		exports

University of Greenwich

UNIVERSITY of GREENWICH PEGFA I Institute of Political Economy, Governance, Finance and Accountability

The effects of female and male wages in N on labour productivity in the next period

University of Greenwich

The impact of an increase in female and male wages on employment

University of Greenwich

The effects of an increase in public social infrastructure investment on total output in the short and medium run

* The effects from the wealth of top 1% on aggregate output is ambiguous and the impact of aggregate output on the wealth of top 1% is positive.

University of Greenwich

CONTINUERSITY of **GREENWICH PEGFA I** Institute of Political Economy, Governance, Finance and Accountability

Figure 4: The effects of an increase in public social infrastructure investment on total output in the short-run

* Based on Figure 1, the positive partial impact of public social expenditures is expected to be relatively larger for female employment compared to the partial impact from expenditures in N sector.

** The impact of total wage payments in H sector is through their impact on wage and wealth taxes.

*** The impact of total wage payments in H sector is through their impact on the wealth of top 1% and bottom 99%.

University of Greenwich

Figure 5: The effects of an increase in public social infrastructure investment on labour

productivity in the next period

University of Greenwich

Figure 7: The effects of public social infrastructure investment on total employment in the short-run and in the next period

University of Greenwich

PEGFA I Institute of Political Economy, Governance, Finance and Accountability

www.gre.ac.uk/gperc

UNIVERSITY of

Figure 8: The effects of closing the gender wage gap in H on total output in the short-run

* The impact of total wage payments in H sector is through their impact on wage and wealth taxes.

** The impact of total wage payments in H sector is through their impact on the wealth of top 1% and bottom 99%.

University of Greenwich

The regimes and their conditions in the case of an increase in female and male wages in N with a constant gender wage gap

Case	Growth Regime	Condition				
$\Psi_{tt}^{NF} > 0$	Wage-led in the short-run	$ \begin{pmatrix} \left \frac{\partial C_t^N}{\partial w_t^{NF}} \right _{Y_t, \alpha_t^N} + \left \frac{\partial C_t^H}{\partial w_t^{NF}} \right _{Y_t, \alpha_t^N} \end{pmatrix} > \\ - \left(\left \frac{\partial I_t}{\partial w_t^{NF}} \right + \left \frac{\partial X_t}{\partial w_t^{NF}} \right - \left \frac{\partial M_t}{\partial w_t^{NF}} \right \end{pmatrix} $				
$\Psi_{tt}^{NF} < 0$	Profit-led in the short-run	$ \left(\left \frac{\partial C_t^N}{\partial w_t^{NF}} \right _{Y_t,\alpha_t^N} + \left \frac{\partial C_t^H}{\partial w_t^{NF}} \right _{Y_t,\alpha_t^N} \right) < \\ - \left(\left \frac{\partial I_t}{\partial w_t^{NF}} \right _{Y_t,\alpha_t^N} + \left \frac{\partial X_t}{\partial w_t^{NF}} \right _{Y_t,\alpha_t^N} \right) < \\ \left \frac{\partial I_t}{\partial w_t^{NF}} \right _{Y_t,\alpha_t^N} + \left \frac{\partial X_t}{\partial w_t^{NF}} \right _{Y_t,\alpha_t^N} - \left \frac{\partial M_t}{\partial w_t^{NF}} \right _{Y_t,\alpha_t^N} \right) $				
$(\Psi_{tt}^{NF} + \Psi_{t(t-1)}^{NF}) > 0$	Wage-led in the medium- run	Ambiguous due to effects on productivity				
$(\Psi_{tt}^{NF} + \Psi_{t(t-1)}^{NF}) < 0$	Profit-led in the medium- run	Ambiguous due to effects on productivity				

University of Greenwich

Governance, Finance and Accountability

... Model

- Female & male labour force participation depend on wages, social infrastructure, unpaid care
- If E>LF for a particular type of worker, unemployment \downarrow
- e.g. a low female labour supply (lack of public social infrastructure) →exogenous migration
 - or change in gender norms & occupational segregation
- for simplicity we ignore the effects of unemployment on wage rates
- occupational segregation exogenous,
 - determined by gendered social norms
- fertility and mortality rate exogenous

Estimation methodology

- Data: EUKLEMS, AMECO, WWID, EC, ONS 1970-2015(16)
- Systems estimation using Seemingly Unrelated Regression for C in H and N
- Single equation estimations for I, X, M, PW, PW1/PW
 - Using ECM if relevant
- Panel fixed effects using 5 year averages for productivity
 - 18 sectors other than education, health, care
 - five year non-overlapping average of explanatory variables starting from 1970 and of the dependent variable starting from 1971
- Robustness check with instrumental variables
 - IV: w_F , α , β in H and N, t_R , t_W , t_{PW} , and Yworld, all in t, t-1, t-2

Table 3: Estimation results for consumption in N and H

Dependent variable	Δlog	C^{N}_{t}	$\Delta log C^{H}_{t}$			
Variable	Coeff.	p- value	Coeff.	p- value		
Constant	0.007	0.003	0.011	0.081		
$\Delta log(R_t(1-t^R_t))$	0.085	0.000	0.063	0.235		
$\Delta \log(WB^{F}_{t}(1-t^{W}_{t}))$	0.150	0.041	0.304	0.109		
$\Delta \log(WB^{M}_{t}(1-t^{W}_{t}))$	0.375	0.000	0.244	0.291		
$\Delta \log(PW99_t(1-t^{PW}_t))$	0.132	0.008	-0.072	0.569		
$\Delta \log(PW1_t(1-t^{PW}_t))$	0.017	0.478	-0.053	0.381		
Adj. R ²	0.73	35	0.134			
DW statistic	1.52	29	1.394			
Sample	1971-2	2015	1971-2015			
Estimation method: SU	JR					

University of Greenwich

Dependent variable	$\Delta \log I_t$				
Variable	Coeff.	p-value			
Constant	-0.947	0.004			
$\Delta \log(\pi_t(1-t^R_t))$	0.196	0.090			
$\Delta log Y_t$	1.282	0.039			
$\Delta \log(PW1_t(1-t^{PW}_t))$	-0.058	0.503			
$\Delta \log(PW99_t(1-t^{PW}_t))$	0.389	0.031			
$\Delta log(D/Y)_t$	-0.289	0.016			
logI _{t-1}	-0.276	0.000			
logY _{t-1}	0.403	0.001			
$log(PW1_{t-1}(1-t^{PW}_{t-1}))$	-0.074	0.045			
Adj. R ²	0.69	94			
DW statistic	2.03	1			
Sample	1971-2016				

Table 4: Estimation results for private investment

Estimation method: Error correction model

University of Greenwich

Dependent variable logT _{it}					
Variable	Coeff. p-valu				
$logY_{i(t-1)}$	0.231	0.011			
logI _{i(t-1)} /Eit	-0.100	0.149			
logw ^F _{i(t-1)}	0.679	0.000			
$log \alpha_{i(t-1)}$	0.564	0.000			
$log(G^{\rm H}_{t\text{-}1}\!\!+\!\!C^{\rm H}_{t\text{-}1})\!/N_{t\text{-}1}$	0.267	0.019			
$log(I^G_{t\text{-}1})/N_{t\text{-}1}$	-0.029	0.293			
Constant	-0.534	0.230			
Adj. R ²	0.	.920			
Number of observations	162				
Number of sectors	18				
Sample	1971-2016				

Table 7: Estimation results for productivity in N

Estimation method: Fixed effects panel regression

Note: The time indicator t refers to five year non-overlapping average of explanatory variables starting from 1970 and of the dependent variable starting from 1971.

University of Greenwich

Table 8: Estimation results for private net wealth

Dependent variable	$\Delta logPW_t(1-t^{PW}_{t-1}))$							
Variable	Coeff.	p-value						
Constant	-0.002	0.776						
$\Delta \log(WB^{F_{t}}(1-t^{W_{t}}))$	0.496	0.016						
$\Delta \log(WB^{M_{t}}(1-t^{W_{t}}))$	0.420	0.091						
$\Delta \log(R_t(1-t^{R_t}))$	0.213	0.000						
$\Delta log(PW_{t-1}(1-t^{PW}_{t-1}))$	0.333	0.016						
Adj. R ²	0.6	506						
DW statistic	1.8	342						
Sample	imple 1972-2015							
Estimation method: OLS in first differences								

University of Greenwich

$log\lambda_t$					
Coeff.	p-value				
-0.081	0.671				
0.108	0.452				
-0.229	0.227				
0.244	0.095				
0.854	0.000				
-0.058	0.075				
0	.809				
2	.282				
1973-2016					
	log Coeff. -0.081 0.108 -0.229 0.244 0.854 -0.058 0 2 197				

Table 9: Estimation results for private net wealth concentration

Estimation method: Autoregressive distributed lag model (ARDL)

University of Greenwich

Table 5: Estimation results for exports

Dependent variable	$\Delta log X_t$					
Variable	Coeff.	p- value				
Constant	-0.014	0.213				
$\Delta \log(\pi_t)$	0.124	0.299				
$\Delta log Y^{World}{}_t$	1.741	0.000				
Adj. R ²	0.418					
DW statistic	1.778					
Sample	1971-2	2016				
Estimation method: O	LS in first d	ifferences				

Table 6: Estimation results for imports

Dependent variable	$\Delta log M_t$					
Variable	Coeff.	p- value				
Constant	-2.261	0.005				
$\Delta \log(\pi_t)$	-0.182	0.129				
$\Delta \log Y^{N}_{t}$	1.591	0.000				
$logM_{t-1}$	-0.259	0.005				
$\log Y^{N}_{t-1}$	0.534	0.005				
Adj. R ²	0.67	8				
DW statistic	2.61	5				
Sample 1971-2016						
Estimation method: Er	ror correctio	n model				

The effects of policies

- Fiscal policy
 - government spending in social vs physical infrastructure[↑]
 - increasing E for a given wage rate
 - increasing wage rate for a given E
 - closing gender wage gap for a given E
 - Change tax rate on capital vs labour income and wealth
- Labour market policies
 - Increase hourly real wage rate of men and women in N &/or H
 - close gender gaps in N &/or H
 - Close gender gaps with constant male wage rate
 - Upward convergence

Summary of the results in the UK: public spending

- Strong positive effects of public **social** infrastructure on output and employment in both short and medium run, and on productivity
 - Public social infrastructure/GDP↑ 1%-point→
 - output↑ 3.6% in SR, 2.7% in MR
 - Employment of both women and men ↑ in both short & medium run
 - total E in MR ↑ 1.7%
 - Ef in MR ↑ 3.3%
 - Em in MR ↑ 0.4%
 - − Public debt/GDP \downarrow 0.9%-point in SR, but \uparrow 0.5%-point in MR
- Similar effects of public **physical** infrastructure on output and debt
 - But effects on Ef are smaller & similar to Em (in MR \uparrow ~1.6%)

Summary of the results in the UK : taxation

- An increase in the progressivity of income taxation
 - tax rate on profit income \uparrow 1%-point
 - tax rate on wages \downarrow 1%-point
 - output, female and male employment[↑], and public debt/GDP[↓] in both the short and the medium-run.
- tax rate on wealth
 1%-point (doubling of t on wealth)
 - wealth concentration↓
 - the strongest + impact on output, employment and the budget
 - Output ↑ 0.9% in SR, 4.3% in MR
 - − Ef and Em both \uparrow ~ 0.9% in SR, 4% in MR
 - public debt/GDP↓ 4.3%-point in SR, 10.3%-point in MR

The total (post-multiplier) effects of changes in wages and gender pay gap on the components of aggregate demand (as a ratio to GDP), GDP, employment and public debt/GDP

			•			•		%-point change					
						%-point change	%-point change	in public					
			%-point change			in public social	in government	physical					
	%-point change	%-point change	in private		%-point change	infrastructure	current	infrastructure		% change in	% change in	% change in	
	in consumption	in consumption	investment	%-point change	in imports in N	investment	expenditure	investment	% Change	total	female	male	%-point change in
	in N/GDP	in H/GDP	/GDP	in exports /GDP	/GDP	/GDP	/GDP	/GDP	in GDP	employment	employment	employment	public debt /GDP
	$\Delta C^{N}/Y$	$\Delta C^{H}/Y$	$\Delta I/Y$	ΔΧ/Υ	$\Delta M/Y$	$\Delta G^{\rm H}/{ m Y}$	$\Delta G^{C}/Y$	$\Delta I^G/Y$	$\Delta Y/Y$	ΔΕ/Ε	$\Delta E^{F}/E^{F}$	$\Delta E^{M}/E^{M}$	$\Delta D/Y$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9) ⁽ⁱ⁾	(10)	(11)	(12)	(13)
A. The	effects of a 1% i	ncrease in femal	e and male wages	in N									
SR (ii)	0.356	0.013	0.046	-0.045	0.188	0.030	0.025	0.007	0.244	0.257	0.263	0.251	-0.184
MR (ii) 0.133	0.002	0.067	-0.008	0.085	0.018	0.015	0.004	0.146	-0.556	-0.472	-0.623	-0.208
B. Clo	sing gender pay g	gap in N by 1% : 1	the effects of a 19	% increase in on	ly female wages i	n N (1% decline	in α ^{N)}						
SR	0.091	0.006	0.013	-0.014	0.051	0.007	0.006	0.002	0.062	0.065	0.066	0.063	-0.053
MR	0.048	0.003	0.011	-0.011	0.031	0.003	0.003	0.001	0.027	-0.105	-0.089	-0.118	-0.069
C. The	effects of a 1% i	ncrease in femal	e and male wages	in H									
SR	0.215	0.064	0.121	0.000	0.163	0.134	0.043	0.013	0.427	0.449	0.461	0.440	-0.170
MR	0.067	0.057	0.108	0.020	0.086	0.122	0.034	0.010	0.330	-0.030	0.022	-0.071	-0.119
D. Clo	sing gender pay g	gap in H by 1% : 1	the effects of a 19	% increase in on	ly female wages i	nH(1% decline	in $\alpha^{H)}$						
SR	0.148	0.051	0.086	0.000	0.116	0.090	0.030	0.009	0.298	0.314	0.322	0.308	-0.155
MR	0.044	0.046	0.079	0.014	0.063	0.082	0.024	0.007	0.232	-0.024	0.012	-0.054	-0.112
E: The	effects of a 1% i	ncrease in femal	e and male wages	s in both N and H	(iii)								
SR	0.571	0.077	0.167	-0.045	0.352	0.163	0.068	0.020	0.670	0.706	0.724	0.691	-0.354
MR	0.200	0.059	0.175	0.011	0.171	0.140	0.049	0.014	0.476	-0.586	-0.451	-0.694	-0.327
F. Upw	ard convergence:	The effects of a 2	2% increase in f	female wages and	1% increase in	male wages in bo	th N and H (closi	ng gender pay ga	ps by 1%; 1	% decline in	α^{H} iand α^{N} (iv))	
SR	0.811	0.133	0.266	-0.059	0.519	0.261	0.105	0.031	1.030	1.085	1.113	1.062	-0.562
MR	0.292	0.108	0.265	0.013	0.265	0.225	0.075	0.022	0.736	-0.715	-0.528	-0.865	-0.507
Notes:	(i) Column (9)=(1)	+(2)+(3)+(4)-(5)+(6)+(7)+(8). In eac	h column, the effe	ects in Appendix	3 are multiplied by	y the wage rate in	the relevant sect	or and divid	ed by Y.			
(ii) SR:	short run. MR: m	edium-run, define	ed as the cumulati	ve of the effects i	n the short-run a	nd the next period	l when productiv	ity in N changes of	endogenous	ly.			
(iii) Su	m of the effects in	simulations (A) a	and (C)										
(iv) Sum of the effects in simulations (A), (B), (C) and (D)													

University of Greenwich

UNIVERSITY of GREENWICH PEGFA I Institute of Political Economy,

Governance, Finance and Accountability

The total (post-multiplier) effects of changes in fiscal policies on the components of aggregate demand (as a ratio to GDP), GDP, employment and public debt/GDP

				, – ,	1		-	%-point change					
						%-point change	%-point change	in public					
			%-point change			in public social	in government	physical					
	%-point change	%-point change	in private		%-point change	infrastructure	current	infrastructure		% change in	% change in	% change in	
	in consumption	in consumption	investment	%-point change	in imports in N	investment	expenditure	investment	% Change	total	female	male	%-point change in
	in N/GDP	in H/GDP	/GDP	in exports /GDP	/GDP	/GDP	/GDP	/GDP	in GDP	employment	employment	employment	public debt /GDP
	$\Delta C^N \! / Y$	$\Delta C^{H}\!/Y$	$\Delta I/Y$	$\Delta X/Y$	$\Delta M/Y$	$\Delta G^{H} / Y$	$\Delta G^{C} \! / Y$	$\Delta I^G/Y$	$\Delta Y/Y$	ΔΕ/Ε	$\Delta E^F\!/E^F$	$\Delta E^M\!/E^M$	$\Delta D/Y$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9) ⁽ⁱ⁾	(10)	(11)	(12)	(13)
A. The	effects of a 1% -	point increase in	public social infr	astructure inves	tment/GDP (ĸ ^H)								
SR (ii)	1.847	0.071	0.960	0.000	1.200	1.435	0.365	0.107	3.585	5.454	6.722	4.437	-0.981
MR (ii)	0.649	0.018	0.753	0.148	0.545	1.328	0.276	0.081	2.707	1.674	3.238	0.420	0.497
B. The	effects of a 1% -	point increase in	public physical in	nfrastructure inv	estment/GDP (κ ⁰	G)							
SR	0.985	0.034	0.512	0.000	1.003	0.249	0.208	1.061	2.046	2.154	2.210	2.109	-0.213
MR	0.916	0.027	0.472	0.023	0.945	0.243	0.204	1.060	1.999	1.660	1.764	1.576	0.550
C. The	effects of a 1% -	point increase in	the tax rate on pr	ofit income (t ^R)									
SR	-0.194	-0.006	-0.057	0.000	-0.102	-0.025	-0.021	-0.006	-0.208	-0.219	-0.224	-0.214	-0.200
MR	-0.230	-0.005	-0.009	-0.005	-0.094	-0.025	-0.021	-0.006	-0.207	-0.127	-0.143	-0.114	-0.478
D. The	effects of a 1% -	point increase in	the tax rate on we	ealth (t ^{PW})									
SR	0.298	0.015	0.802	0.000	0.442	0.110	0.092	0.027	0.902	0.949	0.974	0.930	-4.264
MR	1.986	0.066	3.199	0.020	2.070	0.521	0.436	0.128	4.285	4.134	4.293	4.006	-10.268
E. The	effects of a 1% -p	oint increase in	the tax rate on wa	ge income (t ^W)									
SR	-1.080	-0.038	-0.321	0.000	-0.570	-0.142	-0.119	-0.035	-1.164	-1.226	-1.257	-1.200	0.212
MR	-1.156	-0.034	-0.394	-0.027	-0.614	-0.162	-0.136	-0.040	-1.335	-0.888	-0.983	-0.812	0.053
Notes:	(i) Column (9)=(1))+(2)+(3)+(4)-(5)+	(6)+(7)+(8). In ea	ch column, the e	ffects in Appendi	x 4 are divided by	Υ.						
(ii) SR:	short run. MR: m	edium-run, define	ed as the cumulati	ve of the effects i	in the short-run a	nd the next period	d when productive	ity in N changes of	endogenous	ly.			

University of Greenwich

The total (post-multiplier) effects of mix of labour market and fiscal policies on the components of aggregate demand (as a ratio to GDP), GDP, employment and public debt/GDP

			·			*	-	%-point change					
						%-point change	%-point change	in public					
			%-point change			in public social	in government	physical					
	%-point change	%-point change	in private		%-point change	infrastructure	current	infrastructure		% change in	% change in	% change in	
	in consumption	in consumption	investment	%-point change	in imports in N	investment	expenditure	investment	% Change	total	female	male	%-point change in
	in N/GDP	in H/GDP	/GDP	in exports /GDP	/GDP	/GDP	/GDP	/GDP	in GDP	employment	employment	employment	public debt /GDP
	$\Delta C^N/Y$	$\Delta C^{H}/Y$	$\Delta I/Y$	$\Delta X/Y$	$\Delta M/Y$	$\Delta G^{H}/Y$	$\Delta G^{C}/Y$	$\Delta I^G/Y$	$\Delta Y/Y$	ΔΕ/Ε	$\Delta E^F\!/E^F$	$\Delta E^M / E^M$	$\Delta D/Y$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9) ⁽ⁱ⁾	(10)	(11)	(12)	(13)
A. Pu	ple public investr	nent and upward o	convergence in w	ages: The effects	of a 1% -point in	crease in public	social infrastruc	ture investment/	GDP (ĸ ^H) ar	d closing gen	der gaps via uj	pward converg	ence in wages via
2% ir	ncrease in female	wages and 1% in	ncrease in male v	vages in both N a	nd H (ii)								
SR	2.658	0.205	1.226	-0.059	1.719	1.696	0.470	0.138	4.615	6.539	7.835	5.500	-1.543
MR	0.941	0.126	1.018	0.161	0.809	1.554	0.351	0.103	3.443	0.959	2.710	-0.445	-0.010
B. Pu	rple and green put	olic investment ar	nd upward conver	gence in wages:	The effects of a 1	% -point increase	in public social	and physical infr	astructure i	investment/GI	DP (κ^{H} and κ^{G})) and closing §	gender gaps via
upwar	d convergence in	wages via 2% inc	crease in female	wages and 1% in	ncrease in male v	vages in both N a	nd H (iii)	····			(. .
SR	3.643	0.239	1.738	-0.059	2.722	1.945	0.678	1.199	6.661	8.693	10.044	7.609	-1.756
MR	1.856	0.153	1.490	0.184	1.754	1.797	0.554	1.163	5.443	2.619	4.475	1.132	0.540
C. Pro	gressive income (ax: The effects of	f a 1% -point incr	ease in the tax ra	ate on profit incom	ne (t ^R) and a 1%	-point decrease in	n the tax rate on	wages (t ^W) (iv)			
SR	0.887	0.032	0.264	0.000	0.469	0.116	0.097	0.029	0.956	1.007	1.033	0.986	-0.412
MR	0.926	0.029	0.385	0.022	0.519	0.137	0.115	0.034	1.129	0.761	0.840	0.698	-0.531
D. Pu	ple and green put	olic investment, u	ipward converger	ice in wages, and	progressive inco	me and wealth ta	xation: a 1% -poi	nt increase in pu	blic social a	nd physical in	frastructure i	nvestment/GD	$P(\kappa^{\rm H} \text{ and } \kappa^{\rm O})$ and
closin	g gender gaps via	upward converge	nce in wages via	2% increase in	female wages and	d1% increase in	male wages in b	oth N and H a 1%	-point incr	ease in the tax	rate on profit	income (t ^R),	a 1% -point
decrea	se in the tax rate	on wages (t ^W) and	d a 1% -point inc	rease in the tax r	ate on wealth (t ^{PV}	^V)(v)							
SR	4.827	0.286	2.804	-0.059	3.632	2.171	0.867	1.255	8.519	10.649	12.051	9.525	-6.431
MR	4.767	0.248	5.074	0.226	4.344	2.455	1.105	1.325	10.856	7.514	9.607	5.836	-10.259
Notes	(i) Column (9)=(1))+(2)+(3)+(4)-(5)+	(6)+(7)+(8)										
(ii) Su	m of the effects in	simulations (A) in	n Table 11 and (F)	in Table 10.									
(iii) Su	m of the effects in	simulations (A) a	and (B) in Table 1	1 and (F) in Table	e 10.								
(iv) Tł	e effects in simula	ations (C) minus (E) in Table 11.										
(v) Th	e effects in simula	tions (A) plus (B)	plus (C) plus (D)	minus (E) in Tab	le 11 plus (F) in 7	Table 10.							

University of Greenwich

Table 7.1 Regression results for Consumption in N and H								
Dependent variable	$\Delta log C^{N}$		$\Delta log C^{H}$					
Variable	Coeff.	p-value	Coeff.	p-value				
Constant	0.007	0.007	0.011	0.091				
$\Delta \log(R_t(1-t_t^R))$	0.058	0.052	0.001	0.993				
$\Delta \log(WB^{F}_{t}(1-t^{W}_{t}))$	0.139	0.092	0.292	0.168				
$\Delta \log(WB^{M}_{t}(1-t^{W}_{t}))$	0.373	0.002	0.224	0.452				
$\Delta \log(PW99_t(1-t^{PW}_t))$	0.172	0.009	-0.089	0.586				
$\Delta \log(PW1_t(1-t^{PW}_t))$	-0.005	0.861	-0.016	0.834				
Adj. R ²	0.681		0.067					
DW statistic	1.504618		1.406538					
Sample	1975 2015		1975 2015					
Note: Instruments are w_F , α , β in H and N, t^R , t^W , t^{PW} , all in t, t-1, t-2								
Estimation Method: Th								

University of Greenwich

Table 7.2 Regression results for private investment

Dependent variable	$\Delta \log I$		
Variable	Coeff.	p-value	
Constant	-1.800	0.001	
$\Delta \log(\pi_t(1-t^R_t))$	0.081	0.543	
$\Delta \log Y_t$	1.730	0.033	
$\Delta \log(PW1_t(1-t^{PW}_t))$	-0.213	0.079	
$\Delta \log(PW99_t(1-t^{PW}_t))$	0.415	0.122	
$\Delta \log(D/Y)_t$	-0.167	0.249	
logI _{t-1}	-0.322	0.000	
logY _{t-1}	0.6395	0.0002	
$\log(\mathrm{PW1}_{t-1}(1-t^{\mathrm{PW}}_{t-1}))$	-0.161969	0.0078	
Adj. R ²	0.714379		
DW statistic	1.735481		
Sample	1973 2015		

Note: Instruments are w_F , α , β in H and N, t^R , t^W , t^{PW} , all in t, t-1, t-2

Estimation Method: Two-Stage Least Squares

University of Greenwich

Table 7.3 Regression results for exports

Dependent variable	Δlog	ΔlogX		
Variable	Coeff.	p-value		
Constant	-0.020	0.074		
$\Delta \log(\pi_t)$	0.100	0.422		
$\Delta log Y^{World}_{t}$	1.992	0.000		
Adj. R ²	0.494			
DW statistic	1.643			
Sample	1973 2015			

Note: Instruments are Instruments are wF, α , β in H and N, tR, tW, tPW,, and Y^{world,} all in t, t-1, t-2

Estimation Method: Two-Stage Least Squares

University of Greenwich

Table 7.4 Regression results for imports

Dependent variable	$\Delta \log M$		
Variable	Coeff.	p-value	
Constant	-1.915	0.048	
$\Delta \log(\pi_t)$	-0.191	0.197	
$\Delta log Y^{N}_{t}$	1.502	0.000	
logM _{t-1}	-0.241	0.038	
$\log Y^{\rm N}_{t-1}$	0.470	0.043	
Adj. R ²	0.638		
DW statistic	2.409		
Sample	1973 2015		

Note: Instruments are $w_{F}^{},\alpha,\beta$ in H and N, $t^{R},t^{W},t^{PW,}$ all in t, t-1, t-2

Estimation Method: Two-Stage Least Squares

University of Greenwich

www.gre.ac.uk/gperc

Gender and the economy: Feminist Economics

- gendered socialisation and asymmetric power relations between men and women
- •Institutionally and historically-constructed gender-related norms, values, and behaviour
- Care work: Unpaid and invisible domestic female labour
 unpaid activities amount to 70% of total world output valued at prevailing wages; 69% represents women's work (UNDP)
- •Women's concentration in caring/nurturing work, both unpaid or paid service sector
- •Women's educational achievements do not necessarily translate into labour market gains
- •Occupational segregation and gender-based discriminatory practices reduce possible gains
- •Gender pay gap almost 20% in the UK

Structuralist features

•Real world structural features of the economy matter

- -the existence of excess capacity & involuntary unemployment
- →demand matters
- –income distribution \rightarrow demand
- –social norms \rightarrow gendered behavioural differences
- -gendered occupational segregation
- -gender pay gaps
- -oligopolistic market structure and price setting by firms
- -labour intensity of exports

What is public infrastructure investment?

- public investment is required
 - where benefits do not just accrue to individual users but have a public good character and accrue to society as a whole.
 - goods and services, access to which is seen as human right but private supply/profit motive leads to undersupply /privileged access
- Physical infrastructure: green investment; Ecological deficit
 - Public transport, renewable energy, housing
- Social infrastructure: education, child care, health and social care,
 - care deficit: both direct and indirect impact on productivity
 - Educated and healthy workforce
 - Female labour force participation[↑]
 - » socializing the invisible, unpaid domestic care work
 - » Elson: recognize, reduce, redistribute
 - » Ilkkaracan: Purple investment
 - Social security \rightarrow more innovative and productive workers

University of Greenwich

...social infrastructure as investment

- UK Women's Budget Group:
- Currently, public spending in education, childcare, health and social care are considered as current spending as opposed to public infrastructure investment
- these should be redefined as infrastructure spending in the public budget

Gender-sensitive policy-making

- Equality is not only a desirable social goal in itself but may also contribute to economic development
- Complementarity between targets
 - gender equality
 - decent job creation
 - inclusive and sustainable development,
 - poverty alleviation
 - Ecological sustainability
 - Productive economy
- Complementing and not competing
- mobilize all the tools of economic policy

How to finance?

- Progressive tax policy on income and wealth
- Borrowing
 - Borrow to spend in both physical and social infrastructure –redefine fiscal policy rule
- Monetary policy
 - Bank of England can use Quantitative Easing to buy government bonds to finance public investment
- National Investment Bank
- More equality –supports the budget too

There are alternative policies: optimism of the will

- Aims: full employment, equality, ecological sustainability
 - gender equality
 - decent job creation
 - inclusive and sustainable development,
 - Rising share of labour in national income
- implications for policy in both developed and developing countries
- mobilize all the tools of policy
- a comprehensive mix of
 - fiscal and monetary policy
 - public investment in social and physical infrastructure
 - industrial policy
 - labour market policy
 - Financial regulation and corporate governance

Fiscal Policies for an equality-led and sustainable development

- Public investment in social infrastructure
 - Universal public child care and social care, health care, education
 - improve pay and working conditions in these industries
 - Purple jobs for both men and women (Ilkkaracan 2013)
 - Substantial effect on productivity
 - Redefine infrastructure and fiscal rule (Women's Budget Group)
 - More jobs with lower Carbon emissions
 - labour intensive services
 - Purple and green are complementary
 - Purple is the new green
- Public investment in physical infrastructure
 - Green investment in renewable energy, public transport, housing
- Impact on public budget –partly self-financing; there is money!
- Progressive taxation of income and wealth

Labour market policies for an equality-led and sustainable development

- Representation and collective voice for both women and men
 - Collective bargaining coverage
 - inclusive trade unions
 - Labour market regulation, eg ban zero hours
- establishing sufficiently high minimum wages at living wage rate
- regulating high/executive pay via pay ratios
- Gender wage equality --enforce equal pay legislation
 - Higher rates of pay rise at the bottom end of the scale
- Recognize, reduce, redistribute unpaid care (Elson)
 - Universal child care and social care
 - Equal incentives for both men and women regarding parental leave
 - work-life balance as an essential component of decent jobs
 - shorter working hours
 - Downward convergence in hours
 - Shorter hours with wage compensation for the lower wage earners → a narrowing of gender wage gaps.

University of Greenwich

... policies for an equality-led and sustainable development

- Technological change?
 - Shorter working time in parallel with the growth in productivity with wage compensation for the lower income groups.
 - Compared to the 19th century, we are all working part-time today.
 - More equal countries have shorter working hours. (Schor, 2010)
 - shortening of hours \rightarrow higher hourly productivity
- shorter working hours \rightarrow gender equality
 - Shorter hours with wage compensation \rightarrow a narrowing of gender wage gaps.
 - should address daily care responsibilities, and work-life balance based on gender equality in the division of labour in the household;
 - e.g. daily working hours as opposed to more holidays or

longer weekends.

University of Greenwich

Wage-led growth in the age of globalization?

- Inconsistency of the Macro vs. Micro rationale
 - Firm vs. aggregate/national
 - National vs. regional/global level
- the limits of strategies of international competitiveness based on wage competition in a highly integrated global economy
- Economic globalization may make small open economies more likely to be profit-led
- But political globalization \rightarrow race to the bottom in labour share
 - international competitiveness effects are eliminated
 - makes economies more likely to be wage-led: India, Argentina, Mexico, Canada: can grow out of wage moderation alone, but contracts in race to the bottom
- The world as a whole is wage-led, because we do not trade with Mars
- Globalization is not a barrier to wage-led development policies.
- \rightarrow importance of wage and fiscal policy coordination
- Avoid beggar thy neighbour policies
- Space for domestic-demand led & more equal growth in the developing countries
- If developed economies do not cooperate: south-south cooperation
- Wage-led development is an option also in a single wage-led economy, but effects are stronger if coordinated ->BE POLICY LEADER

University of Greenwich